login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244495
Number of 3 X 3 matrices of nonnegative integer entries with all row and column sums <= n.
1
1, 34, 451, 3380, 17531, 70466, 235014, 679722, 1757085, 4147792, 9084361, 18683314, 36421463, 67798940, 121239308, 209285436, 350158809, 569759574, 904194895, 1402934104, 2132700691, 3182223374, 4667981330, 6741092150, 9595505205, 13477677876, 18697927509, 25643668006, 34794756655
OFFSET
0,2
REFERENCES
Stanley, Richard P., Linear homogeneous Diophantine equations and magic labelings of graphs. Duke Math. J. 40 (1973), 607-632.
Stanley, Richard P., Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings. Duke Math. J. 43 (1976), no. 3, 511-531.
LINKS
R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
FORMULA
G.f.: (1+24*x+156*x^2+280*x^3+156*x^4+24*x^5+x^6)/(1-x)^10.
a(k) = 1+(25/6)*k+(3337/420)*k^2+(13777/1512)*k^3+(3289/480)*k^4+(9983/2880)*k^5+(281/240)*k^6+(73/288)*k^7+(107/3360)*k^8+(107/60480)*k^9. - Robert Israel, Jul 06 2014
EXAMPLE
a(1)=34:
0 1's: 1,
1 1: 9,
2 1's: 3*3*2 = 18,
3 1's: 6 (transversals),
total = 34.
MAPLE
f:= k -> 1+(25/6)*k+(3337/420)*k^2+(13777/1512)*k^3+(3289/480)*k^4+(9983/2880)*k^5+(281/240)*k^6+(73/288)*k^7+(107/3360)*k^8+(107/60480)*k^9:
seq(f(k), k=0..1000); # Robert Israel, Jul 06 2014
MATHEMATICA
CoefficientList[Series[(1 + 24*x + 156*x^2 + 280*x^3 + 156*x^4 + 24*x^5 + x^6)/(1 - x)^10, {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 06 2014 *)
PROG
(Magma) [1+(25/6)*k+(3337/420)*k^2+(13777/1512)*k^3+(3289/480)*k^4+(9983/2880)*k^5+(281/240)*k^6+(73/288)*k^7+(107/3360)*k^8+(107/60480)*k^9 : k in [0..30]]; // Wesley Ivan Hurt, Jul 06 2014
CROSSREFS
Sequence in context: A189452 A159655 A271036 * A107917 A277226 A241633
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 06 2014
STATUS
approved