|
|
A219037
|
|
Numbers k such that k divides 2^k + 2 and (k-1) divides 2^k + 1.
|
|
3
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also, numbers k such that 2^k == k-2 (mod k*(k-1)).
The sequence is infinite: if m is in this sequence, then so is 2^m + 2.
No other terms below 10^20.
|
|
REFERENCES
|
W. Sierpinski, 250 Problems in Elementary Number Theory. New York: American Elsevier, 1970. Problem #18.
|
|
LINKS
|
Table of n, a(n) for n=1..4.
Kin Y. Li et al., Solution to Problem 323, Mathematical Excalibur 14(2), 2009, p. 3.
|
|
FORMULA
|
Conjecture: a(n+1) = 2^a(n) + 2 for all n.
|
|
CROSSREFS
|
Intersection of A006517 and A055685.
Cf. A217468, A216822, A171959.
Sequence in context: A167006 A087331 A097419 * A156458 A244494 A136268
Adjacent sequences: A219034 A219035 A219036 * A219038 A219039 A219040
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Max Alekseyev, Nov 10 2012
|
|
STATUS
|
approved
|
|
|
|