|
|
A087331
|
|
Smallest number with all identical digits having n distinct prime divisors.
|
|
3
|
|
|
1, 2, 6, 66, 6666, 111111, 222222, 111111111111, 222222222222, 222222222222222222, 111111111111111111111111, 222222222222222222222222, 22222222222222222222222222222222, 111111111111111111111111111111
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The conjecture that 'for n > 2, a(n) == 0 (mod 3)' is not true since a(12) = 32 2's which is == 1 (mod 3). - Robert G. Wilson v
Sequence could be represented by citing the number of repeated digits concatenated with that digit, e.g., a(8) = 122. See A087450.
|
|
LINKS
|
Table of n, a(n) for n=1..14.
|
|
EXAMPLE
|
a(6) = 22222222 because the 6 distinct prime divisors of a(6) are 2, 3, 7, 11, 13, and 37.
|
|
MATHEMATICA
|
PrimeFactors[n_Integer] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; Do[k = 1; While[t = Table[j*(10^k - 1)/9, {j, 1, 9}]; l = Map[ Length, Map[ PrimeFactors, t]]; Position[l, n] == {}, k++ ]; Print[ t[[Position[l, n] [[1, 1]]]]], {n, 0, 13}]
|
|
CROSSREFS
|
Sequence in context: A091458 A335934 A167006 * A097419 A219037 A156458
Adjacent sequences: A087328 A087329 A087330 * A087332 A087333 A087334
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Amarnath Murthy, Sep 05 2003
|
|
EXTENSIONS
|
Edited, corrected and extended by Robert G. Wilson v, Sep 06 2003
|
|
STATUS
|
approved
|
|
|
|