login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321208
a(n) = [x^(n*(n+1)*(2*n+1)/6)] Product_{k=1..n} Sum_{m>=0} x^(k*m^2).
0
1, 1, 0, 2, 7, 31, 167, 1046, 7949, 60487, 490753, 4232323, 39877499, 401064825, 4191449438, 45993709856, 526379057073, 6284584514360, 77594053714675, 990497759689341, 13053609492660678, 177385290308586391, 2480368806876623852, 35617209442716039028, 524705024124493308382
OFFSET
0,4
COMMENTS
Also the number of nonnegative integer solutions (a_1, a_2, ... , a_n) to the equation a_1^2 + 2*a_2^2 + ... + n*a_n^2 = n*(n+1)*(2*n+1)/6.
FORMULA
a(n) = [x^(n*(n+1)*(2*n+1)/6)] Product_{k=1..n} (theta_3(x^k) + 1)/2, where theta_3() is the Jacobi theta function.
EXAMPLE
1*0^2 + 2*1^2 + 3*2^2 + 4*3^2 + 5*1^2 = 55.
1*0^2 + 2*1^2 + 3*4^2 + 4*0^2 + 5*1^2 = 55.
1*0^2 + 2*2^2 + 3*3^2 + 4*0^2 + 5*2^2 = 55.
1*0^2 + 2*4^2 + 3*1^2 + 4*0^2 + 5*2^2 = 55.
1*0^2 + 2*5^2 + 3*0^2 + 4*0^2 + 5*1^2 = 55.
1*1^2 + 2*1^2 + 3*1^2 + 4*1^2 + 5*3^2 = 55.
1*1^2 + 2*1^2 + 3*4^2 + 4*1^2 + 5*0^2 = 55.
1*1^2 + 2*3^2 + 3*0^2 + 4*2^2 + 5*2^2 = 55.
1*1^2 + 2*3^2 + 3*0^2 + 4*3^2 + 5*0^2 = 55.
1*1^2 + 2*3^2 + 3*2^2 + 4*1^2 + 5*2^2 = 55.
1*1^2 + 2*3^2 + 3*3^2 + 4*1^2 + 5*1^2 = 55.
1*1^2 + 2*5^2 + 3*0^2 + 4*1^2 + 5*0^2 = 55.
1*2^2 + 2*0^2 + 3*3^2 + 4*1^2 + 5*2^2 = 55.
1*2^2 + 2*1^2 + 3*0^2 + 4*1^2 + 5*3^2 = 55.
1*2^2 + 2*2^2 + 3*3^2 + 4*2^2 + 5*0^2 = 55.
1*2^2 + 2*3^2 + 3*2^2 + 4*2^2 + 5*1^2 = 55.
1*2^2 + 2*4^2 + 3*1^2 + 4*2^2 + 5*0^2 = 55.
1*3^2 + 2*1^2 + 3*1^2 + 4*3^2 + 5*1^2 = 55.
1*3^2 + 2*3^2 + 3*2^2 + 4*2^2 + 5*0^2 = 55.
1*4^2 + 2*0^2 + 3*1^2 + 4*2^2 + 5*2^2 = 55.
1*4^2 + 2*0^2 + 3*1^2 + 4*3^2 + 5*0^2 = 55.
1*4^2 + 2*2^2 + 3*3^2 + 4*1^2 + 5*0^2 = 55.
1*4^2 + 2*3^2 + 3*0^2 + 4*2^2 + 5*1^2 = 55.
1*4^2 + 2*3^2 + 3*2^2 + 4*1^2 + 5*1^2 = 55.
1*4^2 + 2*4^2 + 3*1^2 + 4*1^2 + 5*0^2 = 55.
1*5^2 + 2*1^2 + 3*2^2 + 4*2^2 + 5*0^2 = 55.
1*5^2 + 2*3^2 + 3*1^2 + 4*1^2 + 5*1^2 = 55.
1*5^2 + 2*3^2 + 3*2^2 + 4*0^2 + 5*0^2 = 55.
1*6^2 + 2*0^2 + 3*1^2 + 4*2^2 + 5*0^2 = 55.
1*6^2 + 2*1^2 + 3*2^2 + 4*0^2 + 5*1^2 = 55.
1*7^2 + 2*1^2 + 3*0^2 + 4*1^2 + 5*0^2 = 55.
So a(5) = 31.
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 30 2018
STATUS
approved