login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321186
a(n) = [x^(n*(n+1)*(2*n+1)/6)] Product_{k=1..n} Sum_{m>=0} x^(k^2*m).
3
1, 1, 2, 6, 25, 123, 683, 4083, 25839, 171324, 1178755, 8362768, 60867478, 452760486, 3431366195, 26430813268, 206504120774, 1633813641572, 13071700375914, 105635826348216, 861408409243195, 7081998941608535, 58658594339423251, 489168002223876023, 4104791591982736028
OFFSET
0,3
COMMENTS
Also the number of nonnegative integer solutions (a_1, a_2, ... , a_n) to the equation 1^2*a_1 + 2^2*a_2 + ... + n^2*a_n = n*(n+1)*(2*n+1)/6.
LINKS
EXAMPLE
1^2* 0 + 2^2*3 + 3^2*2 + 4^2*0 = 30.
1^2* 1 + 2^2*1 + 3^2*1 + 4^2*1 = 30.
1^2* 1 + 2^2*5 + 3^2*1 + 4^2*0 = 30.
1^2* 2 + 2^2*3 + 3^2*0 + 4^2*1 = 30.
1^2* 2 + 2^2*7 + 3^2*0 + 4^2*0 = 30.
1^2* 3 + 2^2*0 + 3^2*3 + 4^2*0 = 30.
1^2* 4 + 2^2*2 + 3^2*2 + 4^2*0 = 30.
1^2* 5 + 2^2*0 + 3^2*1 + 4^2*1 = 30.
1^2* 5 + 2^2*4 + 3^2*1 + 4^2*0 = 30.
1^2* 6 + 2^2*2 + 3^2*0 + 4^2*1 = 30.
1^2* 6 + 2^2*6 + 3^2*0 + 4^2*0 = 30.
1^2* 8 + 2^2*1 + 3^2*2 + 4^2*0 = 30.
1^2* 9 + 2^2*3 + 3^2*1 + 4^2*0 = 30.
1^2*10 + 2^2*1 + 3^2*0 + 4^2*1 = 30.
1^2*10 + 2^2*5 + 3^2*0 + 4^2*0 = 30.
1^2*12 + 2^2*0 + 3^2*2 + 4^2*0 = 30.
1^2*13 + 2^2*2 + 3^2*1 + 4^2*0 = 30.
1^2*14 + 2^2*0 + 3^2*0 + 4^2*1 = 30.
1^2*14 + 2^2*4 + 3^2*0 + 4^2*0 = 30.
1^2*17 + 2^2*1 + 3^2*1 + 4^2*0 = 30.
1^2*18 + 2^2*3 + 3^2*0 + 4^2*0 = 30.
1^2*21 + 2^2*0 + 3^2*1 + 4^2*0 = 30.
1^2*22 + 2^2*2 + 3^2*0 + 4^2*0 = 30.
1^2*26 + 2^2*1 + 3^2*0 + 4^2*0 = 30.
1^2*30 + 2^2*0 + 3^2*0 + 4^2*0 = 30.
So a(4) = 25.
CROSSREFS
Sequence in context: A321720 A358499 A357949 * A291558 A357902 A370510
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 29 2018
STATUS
approved