OFFSET
0,3
COMMENTS
Also the number of nonnegative integer solutions (a_1, a_2, ... , a_n) to the equation 1^2*a_1 + 2^2*a_2 + ... + n^2*a_n = n*(n+1)*(2*n+1)/6.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..36
EXAMPLE
1^2* 0 + 2^2*3 + 3^2*2 + 4^2*0 = 30.
1^2* 1 + 2^2*1 + 3^2*1 + 4^2*1 = 30.
1^2* 1 + 2^2*5 + 3^2*1 + 4^2*0 = 30.
1^2* 2 + 2^2*3 + 3^2*0 + 4^2*1 = 30.
1^2* 2 + 2^2*7 + 3^2*0 + 4^2*0 = 30.
1^2* 3 + 2^2*0 + 3^2*3 + 4^2*0 = 30.
1^2* 4 + 2^2*2 + 3^2*2 + 4^2*0 = 30.
1^2* 5 + 2^2*0 + 3^2*1 + 4^2*1 = 30.
1^2* 5 + 2^2*4 + 3^2*1 + 4^2*0 = 30.
1^2* 6 + 2^2*2 + 3^2*0 + 4^2*1 = 30.
1^2* 6 + 2^2*6 + 3^2*0 + 4^2*0 = 30.
1^2* 8 + 2^2*1 + 3^2*2 + 4^2*0 = 30.
1^2* 9 + 2^2*3 + 3^2*1 + 4^2*0 = 30.
1^2*10 + 2^2*1 + 3^2*0 + 4^2*1 = 30.
1^2*10 + 2^2*5 + 3^2*0 + 4^2*0 = 30.
1^2*12 + 2^2*0 + 3^2*2 + 4^2*0 = 30.
1^2*13 + 2^2*2 + 3^2*1 + 4^2*0 = 30.
1^2*14 + 2^2*0 + 3^2*0 + 4^2*1 = 30.
1^2*14 + 2^2*4 + 3^2*0 + 4^2*0 = 30.
1^2*17 + 2^2*1 + 3^2*1 + 4^2*0 = 30.
1^2*18 + 2^2*3 + 3^2*0 + 4^2*0 = 30.
1^2*21 + 2^2*0 + 3^2*1 + 4^2*0 = 30.
1^2*22 + 2^2*2 + 3^2*0 + 4^2*0 = 30.
1^2*26 + 2^2*1 + 3^2*0 + 4^2*0 = 30.
1^2*30 + 2^2*0 + 3^2*0 + 4^2*0 = 30.
So a(4) = 25.
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 29 2018
STATUS
approved