login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358499
a(n) = Sum_{k=0..floor(n/4)} (n-4*k)!.
6
1, 1, 2, 6, 25, 121, 722, 5046, 40345, 363001, 3629522, 39921846, 479041945, 6227383801, 87181920722, 1307714289846, 20923268929945, 355693655479801, 6402460887648722, 121646408123121846, 2432922931445569945, 51091297865364919801, 1124007130238495328722
OFFSET
0,3
LINKS
FORMULA
a(n) = n * a(n-1) + a(n-4) - n * a(n-5) for n > 4.
a(n) ~ n! * (1 + 1/n^4 + 6/n^5 + 25/n^6 + 90/n^7 + 302/n^8 + 994/n^9 + 3487/n^10 + ...), for coefficients see A099948. - Vaclav Kotesovec, Nov 24 2022
PROG
(PARI) a(n) = sum(k=0, n\4, (n-4*k)!);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Nov 19 2022
STATUS
approved