login
A358502
Triangle read by rows. The coefficients of the polynomials hypergeom([-x, -x, -n], [-x - n, -x - n], 1) * Product_{j=1..n} (j + x)^2 in ascending order of powers.
0
1, 1, 2, 4, 12, 12, 36, 132, 180, 120, 576, 2400, 4080, 3360, 1680, 14400, 65760, 126000, 134400, 75600, 30240, 518400, 2540160, 5382720, 6350400, 4838400, 1995840, 665280, 25401600, 131725440, 299315520, 396688320, 325987200, 190935360, 60540480, 17297280
OFFSET
0,3
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 1, 2;
[2] 4, 12, 12;
[3] 36, 132, 180, 120;
[4] 576, 2400, 4080, 3360, 1680;
[5] 14400, 65760, 126000, 134400, 75600, 30240;
[6] 518400, 2540160, 5382720, 6350400, 4838400, 1995840, 665280;
MAPLE
p := (n, x) -> hypergeom([-x, -x, -n], [-x - n, -x - n], 1)*mul((j + x)^2, j=1..n): for n from 0 to 7 do seq(coeff(simplify(p(n, x)), x, k), k = 0..n) od;
CROSSREFS
Sequence in context: A309515 A375551 A342311 * A141668 A087796 A268494
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Nov 26 2022
STATUS
approved