login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309515
Sum of the even parts of the partitions of n into 3 parts.
0
0, 0, 0, 0, 2, 4, 12, 10, 22, 26, 46, 46, 80, 82, 124, 124, 180, 188, 266, 260, 350, 360, 470, 470, 610, 614, 770, 770, 952, 966, 1186, 1176, 1416, 1432, 1704, 1704, 2022, 2028, 2370, 2370, 2750, 2770, 3204, 3190, 3652, 3674, 4180, 4180, 4748, 4756, 5356
OFFSET
0,5
FORMULA
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (i * ((i-1) mod 2) + j * ((j-1) mod 2) + (n-i-j) * ((n-i-j-1) mod 2)).
Conjectures from Colin Barker, Aug 06 2019: (Start)
G.f.: 2*x^4*(1 + x + 5*x^2 + 9*x^4 + 9*x^6 + 7*x^8 + 4*x^10 - x^11 + x^12) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = a(n-1) - a(n-2) + a(n-3) + a(n-4) - a(n-5) + 3*a(n-6) - 3*a(n-7) + 2*a(n-8) - 2*a(n-9) - 2*a(n-10) + 2*a(n-11) - 3*a(n-12) + 3*a(n-13) - a(n-14) + a(n-15) + a(n-16) - a(n-17) + a(n-18) - a(n-19) for n>18.
(End)
EXAMPLE
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
1+1+8
1+1+7 1+2+7
1+2+6 1+3+6
1+1+6 1+3+5 1+4+5
1+1+5 1+2+5 1+4+4 2+2+6
1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
-----------------------------------------------------------------------
n | 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------------------------
a(n) | 0 2 4 12 10 22 26 46 ...
-----------------------------------------------------------------------
MATHEMATICA
Table[Sum[Sum[i * Mod[i - 1, 2] + j * Mod[j - 1, 2] + (n - i - j) * Mod[n - i - j - 1, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 100}]]
CROSSREFS
Sequence in context: A362227 A000348 A168342 * A375551 A342311 A358502
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 05 2019
STATUS
approved