login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358496
a(n) = Sum_{k=0..n} binomial(binomial(n, k), k).
1
1, 2, 3, 7, 24, 176, 2623, 79479, 5141566, 669156932, 178757299486, 104033138190939, 125893536876304530, 320091464865316176891, 1828276720220263211454403, 22393381352339181425954204921, 582288411818399885839904060337943, 34678571156322738984042119670750665153
OFFSET
0,2
FORMULA
Limit_{n->infinity} a(n)^(1/n^2) = r^(r^2/(1-2*r)) = 1.533628065110458582..., where r = A220359 = 0.70350607643066243096929661621777... is the real root of the equation (1-r)^(2*r-1) = r^(2*r).
MATHEMATICA
Table[Sum[Binomial[Binomial[n, k], k], {k, 0, n}], {n, 0, 20}]
PROG
(PARI) a(n) = sum(k=0, n, binomial(binomial(n, k), k)); \\ Michel Marcus, Nov 19 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 19 2022
STATUS
approved