login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358493
a(n) = Sum_{k=0..floor(n/3)} (n-2*k)!/k!.
4
1, 1, 2, 7, 26, 126, 745, 5163, 41052, 367981, 3669484, 40282220, 482650681, 6267119885, 87659113950, 1313921407891, 21010208286486, 356998222642362, 6423340164746737, 122001442713615031, 2439314857827015896, 51212765334037840345, 1126436834463405257528
OFFSET
0,3
LINKS
FORMULA
a(n) = (n-1) * a(n-1) + (n-2) * a(n-2) + (n-4) * a(n-3) - 2 * a(n-4) - 2 * a(n-5) + 3 for n > 4.
a(n) ~ n! * (1 + 1/n^2 + 1/n^3 + 3/(2*n^4) + 4/n^5 + 41/(3*n^6) + 97/(2*n^7) + 1399/(8*n^8) + 3961/(6*n^9) + 322951/(120*n^10) + ...). - Vaclav Kotesovec, Nov 24 2022
G.f.: Sum_{k>=0} k! * x^k/(1-x^3)^(k+1). - Seiichi Manyama, Feb 26 2024
MATHEMATICA
Table[Sum[(n-2*k)!/k!, {k, 0, Floor[n/3]}], {n, 0, 30}] (* G. C. Greubel, May 01 2024 *)
PROG
(PARI) a(n) = sum(k=0, n\3, (n-2*k)!/k!);
(Magma)
[(&+[Factorial(n-2*k)/Factorial(k): k in [0..Floor(n/3)]]): n in [0..30]]; // G. C. Greubel, May 01 2024
(SageMath)
[sum(factorial(n-2*k)/factorial(k) for k in range(1+n//3)) for n in range(31)] # G. C. Greubel, May 01 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Nov 19 2022
STATUS
approved