login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105216
Maximum denominator among the n! ratios equal to the continued fractions which have the permutations of (1,2,3,...,n) for terms.
1
1, 2, 7, 31, 164, 1021, 7340, 59899, 547423, 5541311, 61560751, 744810564, 9749580487, 137299957892, 2069988277027, 33266800950301, 567742165061876, 10254686071781119, 195439907769223706, 3919618523321600065, 82517650453354285621, 1819502802723019762607
OFFSET
1,2
COMMENTS
Calculated by Vladeta Jovovic and David W. Wilson.
LINKS
FORMULA
a(n) ~ c * n!, where c = 1.69579254611555585961617066333... . - Vaclav Kotesovec, Aug 25 2014
From Mark van Hoeij, Jul 08 2024: (Start)
Conjecture: a(n) = n*a(n-1) + (n-1)*a(n-3) + a(n-4).
Consequently: a(n) = round( sqrt(2/Pi) * (exp(-1)*BesselI(1,1)+ sinh(1)*BesselI(0,1)) * BesselK(n/2+1/2,1) * BesselK(n/2+1,1) ). (End)
Consequently: c = exp(-1)*BesselI(1,1)+ sinh(1)*BesselI(0,1). - Vaclav Kotesovec, Jul 09 2024
MAPLE
r:= proc(l) local j; infinity; for j to nops(l) do l[j] +1/% od end: gl:= proc(n) local i, l; l:=[]; for i from 2 to n do l:= `if` (irem (i, 2)=0, [l[], i], [i, l[]]) od; [l[], 1] end: a:= n-> denom (r (gl (n))): seq (a(n), n=1..25); # Alois P. Heinz, Nov 18 2009
MATHEMATICA
r[l_] := Module[{j, f = Infinity}, For[j = 1, j <= Length[l], j++, f = l[[j]] + 1/f]; f];
gl[n_] := Module[{i, l = {}}, For[i = 2, i <= n, i++, l = If[Mod [i, 2] == 0, Append[l, i], Prepend[l, i]]]; Append[l, 1]];
a[n_] := Denominator [r[gl[n]]];
Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Nov 18 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A105151.
Sequence in context: A277396 A227119 A002872 * A260532 A193657 A007164
KEYWORD
nonn
AUTHOR
Leroy Quet, Apr 12 2005
EXTENSIONS
More terms from Alois P. Heinz, Nov 18 2009
STATUS
approved