login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Maximum denominator among the n! ratios equal to the continued fractions which have the permutations of (1,2,3,...,n) for terms.
1

%I #30 Jul 10 2024 06:30:01

%S 1,2,7,31,164,1021,7340,59899,547423,5541311,61560751,744810564,

%T 9749580487,137299957892,2069988277027,33266800950301,567742165061876,

%U 10254686071781119,195439907769223706,3919618523321600065,82517650453354285621,1819502802723019762607

%N Maximum denominator among the n! ratios equal to the continued fractions which have the permutations of (1,2,3,...,n) for terms.

%C Calculated by Vladeta Jovovic and David W. Wilson.

%H Alois P. Heinz, <a href="/A105216/b105216.txt">Table of n, a(n) for n = 1..200</a>

%F a(n) ~ c * n!, where c = 1.69579254611555585961617066333... . - _Vaclav Kotesovec_, Aug 25 2014

%F From _Mark van Hoeij_, Jul 08 2024: (Start)

%F Conjecture: a(n) = n*a(n-1) + (n-1)*a(n-3) + a(n-4).

%F Consequently: a(n) = round( sqrt(2/Pi) * (exp(-1)*BesselI(1,1)+ sinh(1)*BesselI(0,1)) * BesselK(n/2+1/2,1) * BesselK(n/2+1,1) ). (End)

%F Consequently: c = exp(-1)*BesselI(1,1)+ sinh(1)*BesselI(0,1). - _Vaclav Kotesovec_, Jul 09 2024

%p r:= proc(l) local j; infinity; for j to nops(l) do l[j] +1/% od end: gl:= proc(n) local i, l; l:=[]; for i from 2 to n do l:= `if` (irem (i, 2)=0, [l[], i], [i, l[]]) od; [l[], 1] end: a:= n-> denom (r (gl (n))): seq (a(n), n=1..25); # _Alois P. Heinz_, Nov 18 2009

%t r[l_] := Module[{j, f = Infinity}, For[j = 1, j <= Length[l], j++, f = l[[j]] + 1/f]; f];

%t gl[n_] := Module[{i, l = {}}, For[i = 2, i <= n, i++, l = If[Mod [i, 2] == 0, Append[l, i], Prepend[l, i]]]; Append[l, 1]];

%t a[n_] := Denominator [r[gl[n]]];

%t Table[a[n], {n, 1, 25}] (* _Jean-François Alcover_, Nov 18 2020, after _Alois P. Heinz_ *)

%Y Cf. A105151.

%K nonn

%O 1,2

%A _Leroy Quet_, Apr 12 2005

%E More terms from _Alois P. Heinz_, Nov 18 2009