login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125275
Eigensequence of triangle A039599: a(n) = Sum_{k=0..n-1} A039599(n-1,k)*a(k) for n > 0 with a(0) = 1.
4
1, 1, 2, 7, 31, 162, 968, 6481, 47893, 386098, 3364562, 31460324, 313743665, 3320211313, 37124987124, 436985496790, 5397178181290, 69748452377058, 940762812167126, 13213888481979449, 192891251215160017
OFFSET
0,3
COMMENTS
Starting with offset 1, these are the row sums of triangle A147294. - Gary W. Adamson, Nov 05 2008
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
FORMULA
a(n) = Sum_{k=0..n-1} a(k) * C(2*n-1, n-k-1) * (2*k + 1)/(2*n - 1) for n > 0 with a(0) = 1.
EXAMPLE
a(3) = 2*(1) + 3*(1) + 1*(2) = 7;
a(4) = 5*(1) + 9*(1) + 5*(2) + 1*(7) = 31;
a(5) = 14*(1) + 28*(1) + 20*(2) + 7*(7) + 1*(31) = 162.
Triangle A039599(n,k) = C(2*n+1, n-k)*(2*k+1)/(2*n+1) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 1;
2, 3, 1;
5, 9, 5, 1;
14, 28, 20, 7, 1;
42, 90, 75, 35, 9, 1;
...
where the g.f. of column k is G000108(x)^(2*k+1)
and G000108(x) = (1 - sqrt(1 - 4*x))/(2*x) is the Catalan g.f. function.
MATHEMATICA
A125275=ConstantArray[0, 20]; A125275[[1]]=1; Do[A125275[[n]]=Binomial[2*n-1, n-1]/(2*n-1)+Sum[A125275[[k]]*Binomial[2*n-1, n-k-1]*(2*k+1)/(2*n-1), {k, 1, n-1}]; , {n, 2, 20}]; Flatten[{1, A125275}] (* Vaclav Kotesovec, Dec 09 2013 *)
PROG
(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, a(k)*binomial(2*n-1, n-k-1)*(2*k+1)/(2*n-1)))
CROSSREFS
Cf. A000108, A039599, A125276 (variant), A147294.
Sequence in context: A221957 A030966 A009132 * A007446 A277396 A227119
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 26 2006
STATUS
approved