OFFSET
0,3
COMMENTS
Starting with offset 1, these are the row sums of triangle A147294. - Gary W. Adamson, Nov 05 2008
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..500
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
FORMULA
a(n) = Sum_{k=0..n-1} a(k) * C(2*n-1, n-k-1) * (2*k + 1)/(2*n - 1) for n > 0 with a(0) = 1.
EXAMPLE
a(3) = 2*(1) + 3*(1) + 1*(2) = 7;
a(4) = 5*(1) + 9*(1) + 5*(2) + 1*(7) = 31;
a(5) = 14*(1) + 28*(1) + 20*(2) + 7*(7) + 1*(31) = 162.
Triangle A039599(n,k) = C(2*n+1, n-k)*(2*k+1)/(2*n+1) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 1;
2, 3, 1;
5, 9, 5, 1;
14, 28, 20, 7, 1;
42, 90, 75, 35, 9, 1;
...
where the g.f. of column k is G000108(x)^(2*k+1)
and G000108(x) = (1 - sqrt(1 - 4*x))/(2*x) is the Catalan g.f. function.
MATHEMATICA
PROG
(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, a(k)*binomial(2*n-1, n-k-1)*(2*k+1)/(2*n-1)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 26 2006
STATUS
approved