Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jun 05 2021 01:37:48
%S 1,1,2,7,31,162,968,6481,47893,386098,3364562,31460324,313743665,
%T 3320211313,37124987124,436985496790,5397178181290,69748452377058,
%U 940762812167126,13213888481979449,192891251215160017
%N Eigensequence of triangle A039599: a(n) = Sum_{k=0..n-1} A039599(n-1,k)*a(k) for n > 0 with a(0) = 1.
%C Starting with offset 1, these are the row sums of triangle A147294. - _Gary W. Adamson_, Nov 05 2008
%H Vaclav Kotesovec, <a href="/A125275/b125275.txt">Table of n, a(n) for n = 0..500</a>
%H Guo-Niu Han, <a href="/A196265/a196265.pdf">Enumeration of Standard Puzzles</a>, 2011. [Cached copy]
%H Guo-Niu Han, <a href="https://arxiv.org/abs/2006.14070">Enumeration of Standard Puzzles</a>, arXiv:2006.14070 [math.CO], 2020.
%F a(n) = Sum_{k=0..n-1} a(k) * C(2*n-1, n-k-1) * (2*k + 1)/(2*n - 1) for n > 0 with a(0) = 1.
%e a(3) = 2*(1) + 3*(1) + 1*(2) = 7;
%e a(4) = 5*(1) + 9*(1) + 5*(2) + 1*(7) = 31;
%e a(5) = 14*(1) + 28*(1) + 20*(2) + 7*(7) + 1*(31) = 162.
%e Triangle A039599(n,k) = C(2*n+1, n-k)*(2*k+1)/(2*n+1) (with rows n >= 0 and columns k = 0..n) begins:
%e 1;
%e 1, 1;
%e 2, 3, 1;
%e 5, 9, 5, 1;
%e 14, 28, 20, 7, 1;
%e 42, 90, 75, 35, 9, 1;
%e ...
%e where the g.f. of column k is G000108(x)^(2*k+1)
%e and G000108(x) = (1 - sqrt(1 - 4*x))/(2*x) is the Catalan g.f. function.
%t A125275=ConstantArray[0,20]; A125275[[1]]=1; Do[A125275[[n]]=Binomial[2*n-1,n-1]/(2*n-1)+Sum[A125275[[k]]*Binomial[2*n-1,n-k-1]*(2*k+1)/(2*n-1),{k,1,n-1}];,{n,2,20}]; Flatten[{1,A125275}] (* _Vaclav Kotesovec_, Dec 09 2013 *)
%o (PARI) a(n)=if(n==0,1,sum(k=0,n-1, a(k)*binomial(2*n-1, n-k-1)*(2*k+1)/(2*n-1)))
%Y Cf. A000108, A039599, A125276 (variant), A147294.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Nov 26 2006