login
A227122
Number of n X 3 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 4 binary array having a sum of zero, with rows and columns of the latter in lexicographically nondecreasing order.
1
4, 13, 33, 81, 202, 492, 1143, 2524, 5315, 10718, 20776, 38839, 70225, 123134, 209884, 348550, 565100, 896136, 1392363, 2122925, 3180764, 4689176, 6809757, 9751952, 13784441, 19248618, 26574442, 36298963, 49087851, 65760282, 87317562
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (1/362880)*n^9 + (31/60480)*n^7 + (13/17280)*n^5 + (5/12)*n^4 - (167659/90720)*n^3 + (43/12)*n^2 + (12407/1260)*n - 14 for n>2.
Conjectures from Colin Barker, Sep 07 2018: (Start)
G.f.: x*(4 - 27*x + 83*x^2 - 144*x^3 + 157*x^4 - 121*x^5 + 87*x^6 - 62*x^7 + 28*x^8 - x^9 - 4*x^10 + x^11) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>12.
(End)
EXAMPLE
Some solutions for n=4:
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....1..1..0....0..0..0
..0..1..1....0..0..1....0..0..0....0..0..0....0..0..1....1..0..0....0..0..0
..0..1..0....0..0..0....0..1..1....0..1..1....0..1..1....0..0..0....0..0..1
..0..0..0....0..1..0....0..0..0....0..0..1....0..1..0....0..0..0....0..0..1
CROSSREFS
Column 3 of A227125
Sequence in context: A302082 A124669 A036894 * A176361 A322599 A135859
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 01 2013
STATUS
approved