login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227122
Number of n X 3 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 4 binary array having a sum of zero, with rows and columns of the latter in lexicographically nondecreasing order.
1
4, 13, 33, 81, 202, 492, 1143, 2524, 5315, 10718, 20776, 38839, 70225, 123134, 209884, 348550, 565100, 896136, 1392363, 2122925, 3180764, 4689176, 6809757, 9751952, 13784441, 19248618, 26574442, 36298963, 49087851, 65760282, 87317562
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (1/362880)*n^9 + (31/60480)*n^7 + (13/17280)*n^5 + (5/12)*n^4 - (167659/90720)*n^3 + (43/12)*n^2 + (12407/1260)*n - 14 for n>2.
Conjectures from Colin Barker, Sep 07 2018: (Start)
G.f.: x*(4 - 27*x + 83*x^2 - 144*x^3 + 157*x^4 - 121*x^5 + 87*x^6 - 62*x^7 + 28*x^8 - x^9 - 4*x^10 + x^11) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>12.
(End)
EXAMPLE
Some solutions for n=4:
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....1..1..0....0..0..0
..0..1..1....0..0..1....0..0..0....0..0..0....0..0..1....1..0..0....0..0..0
..0..1..0....0..0..0....0..1..1....0..1..1....0..1..1....0..0..0....0..0..1
..0..0..0....0..1..0....0..0..0....0..0..1....0..1..0....0..0..0....0..0..1
CROSSREFS
Column 3 of A227125
Sequence in context: A302082 A124669 A036894 * A176361 A322599 A135859
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 01 2013
STATUS
approved