This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202320 Decimal expansion of x < 0 satisfying x + 2 = e^x, negated. 15
 1, 8, 4, 1, 4, 0, 5, 6, 6, 0, 4, 3, 6, 9, 6, 0, 6, 3, 7, 8, 4, 6, 6, 0, 4, 6, 5, 8, 0, 1, 2, 4, 8, 6, 1, 0, 6, 0, 5, 0, 3, 7, 1, 3, 1, 4, 3, 7, 7, 6, 3, 9, 6, 6, 9, 5, 6, 4, 8, 5, 0, 0, 8, 9, 5, 4, 8, 1, 8, 4, 0, 8, 1, 2, 1, 8, 3, 1, 7, 0, 0, 0, 5, 1, 0, 3, 4, 5, 6, 7, 1, 6, 9, 1, 3, 0, 4, 0, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For many choices of u and v, there is just one x < 0 and one x > 0 satisfying u*x + v = exp(x). Guide to related sequences, with graphs included in Mathematica programs: u.... v.... least x.....greatest x 1.... 2.... A202320.... A202321 1.... 3.... A202324.... A202325 2.... 1.... ..(x=0).... A202343 3.... 1.... ..(x=0).... A202344 2.... 2.... A202345.... A202346 1.... e.... A202347.... A104689 e.... 1.... ..(x=0).... A202350 3.... 0.... A202351.... A202352 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z = g(u,v) an implicit surface of f. For an example related to A202320, take f(x,u,v) = u*x + v - exp(x) and g(u,v) = a nonzero solution x of f(x,u,v) = 0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. LINKS G. C. Greubel, Table of n, a(n) for n = 1..5000 FORMULA Equals -LambertW(-exp(-2)) - 2. - Vaclav Kotesovec, Jan 09 2014 Equals 2 - A202348. - Jianing Song, Dec 30 2018 EXAMPLE x < 0:  -1.841405660436960637846604658012486... x > 0:   1.1461932206205825852370610285213682... MATHEMATICA (* Program 1:  A202320 and A202321 *) u = 1; v = 2; f[x_] := u*x + v; g[x_] := E^x Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -1.9, -1.8}, WorkingPrecision -> 110] RealDigits[r]  (* A202320 *) r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110] RealDigits[r]  (* A202321 *) (* Program 2: implicit surface of u*x+v=e^x *) f[{x_, u_, v_}] := u*x + v - E^x; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 1, 2}]}, {v, 2, 4}, {u, 2, 4}]; ListPlot3D[Flatten[t, 1]] (* for A202320 *) RealDigits[-ProductLog[-1/E^2] - 2, 10, 99] // First (* Jean-François Alcover, Feb 26 2013 *) PROG (PARI) solve(x=-2, -1, x + 2 - exp(x)) \\ Michel Marcus, Dec 30 2018 CROSSREFS Cf. A202322, A202348. Sequence in context: A228496 A259616 A247036 * A011267 A049469 A021547 Adjacent sequences:  A202317 A202318 A202319 * A202321 A202322 A202323 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 16 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 04:38 EDT 2019. Contains 324318 sequences. (Running on oeis4.)