login
A371861
Decimal expansion of Integral_{x=0..1} sqrt(1 - x^3) dx.
0
8, 4, 1, 3, 0, 9, 2, 6, 3, 1, 9, 5, 2, 7, 2, 5, 5, 6, 7, 0, 5, 0, 1, 1, 4, 4, 7, 4, 3, 0, 1, 7, 6, 4, 8, 1, 2, 7, 7, 8, 1, 3, 3, 2, 3, 2, 5, 4, 3, 9, 1, 6, 5, 7, 7, 0, 9, 1, 9, 6, 3, 9, 2, 2, 4, 5, 7, 7, 0, 8, 5, 9, 5, 8, 9, 0, 8, 1, 9, 7, 7, 6, 4, 2, 5, 1, 1, 3, 5, 9, 8, 9, 1, 0, 1, 4, 8, 7, 0, 8, 2, 3, 3
OFFSET
0,1
FORMULA
Equals sqrt(Pi) * Gamma(1/3) / (6 * Gamma(11/6)).
Equals sqrt(3) * Gamma(1/3)^3 / (5*Pi*2^(4/3)). - Vaclav Kotesovec, Apr 09 2024
Equals 3*A118292/10. - Hugo Pfoertner, Apr 09 2024
EXAMPLE
0.8413092631952725567050114474301764812778...
MATHEMATICA
RealDigits[Sqrt[Pi] Gamma[1/3]/(6 Gamma[11/6]), 10, 103][[1]]
RealDigits[Sqrt[3] * Gamma[1/3]^3 / (5*Pi*2^(4/3)), 10, 103][[1]] (* Vaclav Kotesovec, Apr 09 2024 *)
PROG
(PARI) intnum(x=0, 1, sqrt(1 - x^3)) \\ Michel Marcus, Apr 10 2024
CROSSREFS
Decimal expansions of Integral_{x=0..1} sqrt(1 - x^k) dx: A003881 (k=2), this sequence (k=3), A225119 (k=4).
Sequence in context: A228496 A259616 A247036 * A202320 A011267 A049469
KEYWORD
nonn,cons
AUTHOR
Ilya Gutkovskiy, Apr 09 2024
STATUS
approved