login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A371859
Decimal expansion of Integral_{x=0..oo} 1 / sqrt(1 + x^5) dx.
0
1, 5, 4, 9, 6, 9, 6, 2, 7, 7, 7, 4, 7, 3, 5, 3, 0, 2, 9, 5, 6, 2, 1, 9, 5, 3, 8, 3, 1, 7, 0, 8, 8, 2, 1, 2, 8, 9, 1, 9, 6, 9, 7, 5, 8, 2, 2, 0, 1, 1, 7, 1, 6, 5, 4, 0, 0, 9, 0, 5, 3, 6, 0, 9, 7, 7, 2, 7, 3, 1, 4, 7, 8, 0, 7, 1, 4, 9, 7, 9, 8, 2, 2, 6, 8, 7, 5, 2, 8, 3, 4, 0, 5, 3, 0, 6, 5, 7, 6, 9, 7, 1, 7, 6, 9
OFFSET
1,2
FORMULA
Equals Gamma(3/10) * Gamma(6/5) / sqrt(Pi).
Equals 2^(2/5) * Gamma(1/5)^2 / (5 * phi * Gamma(2/5)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Apr 09 2024
EXAMPLE
1.54969627774735302956219538317088212891969758...
MATHEMATICA
RealDigits[Gamma[3/10] Gamma[6/5]/Sqrt[Pi], 10, 105][[1]]
RealDigits[2^(2/5) * Gamma[1/5]^2 / (5*GoldenRatio*Gamma[2/5]), 10, 105][[1]] (* Vaclav Kotesovec, Apr 09 2024 *)
CROSSREFS
Decimal expansions of Integral_{x=0..oo} 1 / sqrt(1 + x^k) dx: A118292 (k=3), A093341 (k=4), this sequence (k=5).
Sequence in context: A054508 A359092 A110617 * A234356 A338502 A102081
KEYWORD
nonn,cons
AUTHOR
Ilya Gutkovskiy, Apr 09 2024
STATUS
approved