login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352324
Decimal expansion of 4*Pi / (5*sqrt(10-2*sqrt(5))).
8
1, 0, 6, 8, 9, 5, 9, 3, 3, 2, 1, 1, 5, 5, 9, 5, 1, 1, 3, 4, 2, 5, 1, 8, 4, 3, 7, 2, 5, 0, 6, 8, 8, 2, 6, 3, 9, 9, 0, 1, 4, 5, 0, 9, 2, 5, 2, 6, 6, 5, 2, 4, 5, 8, 6, 0, 0, 6, 6, 6, 3, 2, 5, 6, 3, 7, 9, 6, 2, 1, 1, 4, 9, 6, 7, 9, 0, 7, 4, 9, 1, 3, 2, 2, 7, 8, 0, 3, 8, 7, 7, 9, 4
OFFSET
1,3
COMMENTS
Cauchy's residue theorem implies that Integral_{x=0..oo} 1/(1 + x^m) dx = (Pi/m) * csc(Pi/m); this is the case m = 5.
The area of a circle circumscribing a unit-area regular decagon.
REFERENCES
Jean-François Pabion, Éléments d'Analyse Complexe, licence de Mathématiques, page 111, Ellipses, 1995.
FORMULA
Equals Integral_{x=0..oo} 1/(1 + x^5) dx.
Equals (Pi/5) *csc(Pi/5).
Equals (1/2) * A019694 * A121570.
Equals 1/Product_{k>=1} (1 - 1/(5*k)^2). - Amiram Eldar, Mar 12 2022
Equals Product_{k>=2} (1 + (-1)^k/A047209(k)). - Amiram Eldar, Nov 22 2024
Equals 1/A371604 = A377405/5. - Hugo Pfoertner, Nov 22 2024
EXAMPLE
1.0689593321155951134251843725068826399014509252665...
MAPLE
evalf(4*Pi / (5*(sqrt(10-2sqrt(5)))), 100);
MATHEMATICA
First[RealDigits[N[4Pi/(5Sqrt[10-2Sqrt[5]]), 93]]] (* Stefano Spezia, Mar 12 2022 *)
CROSSREFS
Integral_{x=0..oo} 1/(1+x^m) dx: A019669 (m=2), A248897 (m=3), A093954 (m=4), this sequence (m=5), A019670 (m=6), A352125 (m=8), A094888 (m=10).
Sequence in context: A261506 A021596 A166528 * A196751 A021149 A096391
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Mar 12 2022
STATUS
approved