login
A371860
Decimal expansion of Integral_{x=0..1} 1 / sqrt(1 - x^3) dx.
0
1, 4, 0, 2, 1, 8, 2, 1, 0, 5, 3, 2, 5, 4, 5, 4, 2, 6, 1, 1, 7, 5, 0, 1, 9, 0, 7, 9, 0, 5, 0, 2, 9, 4, 1, 3, 5, 4, 6, 3, 0, 2, 2, 2, 0, 5, 4, 2, 3, 9, 8, 6, 0, 9, 6, 1, 8, 1, 9, 9, 3, 9, 8, 7, 0, 7, 6, 2, 8, 4, 7, 6, 5, 9, 8, 1, 8, 0, 3, 2, 9, 6, 0, 7, 0, 8, 5, 2, 2, 6, 6, 4, 8, 5, 0, 2, 4, 7, 8, 4, 7, 0, 5, 5
OFFSET
1,2
FORMULA
Equals sqrt(Pi) * Gamma(4/3) / Gamma(5/6).
Equals Gamma(1/3)^3 / (2^(4/3) * sqrt(3) * Pi). - Vaclav Kotesovec, Apr 09 2024
Equals A118292/2. - Hugo Pfoertner, Apr 09 2024
EXAMPLE
1.4021821053254542611750190790502941354630222...
MATHEMATICA
RealDigits[Sqrt[Pi] Gamma[4/3]/Gamma[5/6], 10, 104][[1]]
RealDigits[Gamma[1/3]^3 / (2^(4/3)*Sqrt[3]*Pi), 10, 104][[1]] (* Vaclav Kotesovec, Apr 09 2024 *)
CROSSREFS
Decimal expansions of Integral_{x=0..1} 1 / sqrt(1 - x^k) dx: A019669 (k=2), this sequence (k=3), A085565 (k=4).
Sequence in context: A337996 A087604 A090538 * A320157 A320479 A218769
KEYWORD
nonn,cons
AUTHOR
Ilya Gutkovskiy, Apr 09 2024
STATUS
approved