login
A337996
Triangle read by rows, generalized Eulerian polynomials evaluated at x = -1.
1
1, 0, 1, 0, 0, -4, 0, -2, 0, 26, 0, 0, 80, 352, 912, 0, 16, 0, -1936, -11552, -40368, 0, 0, -3904, -38528, -176832, -560896, -1424960, 0, -272, 0, 297296, 3150208, 17187888, 65931008, 201796240
OFFSET
0,6
FORMULA
The polynomials are defined P(0,0,x)=1 and P(n,k,x)=(1/2)*Sum_{m=0..n} S(m)*x^m where S(m) = Sum_{j=0..n+1}(-1)^j*binomial(n+1,j)*(k*(m-j)+1)^n*signum(k*(m-j)+1).
T(n, k) = P(n, k, -1).
EXAMPLE
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 0, -4
[3] 0, -2, 0, 26
[4] 0, 0, 80, 352, 912
[5] 0, 16, 0, -1936, -11552, -40368
[6] 0, 0, -3904, -38528, -176832, -560896, -1424960
[7] 0, -272, 0, 297296, 3150208, 17187888, 65931008, 201796240
MAPLE
# The function GeneralizedEulerianPolynomial is defined in A337997.
T := (n, k) -> subs(x = -1, GeneralizedEulerianPolynomial(n, k, x)):
for n from 0 to 6 do seq(T(n, k), k=0..n) od;
PROG
(SageMath) # Generalized Eulerian polynomials based on recurrence.
@cached_function
def EulerianPolynomials(n, k):
R.<t> = PolynomialRing(ZZ)
if n == 0 or k == 0: return R(k^n)
return R((k*t*(1-t)*derivative(EulerianPolynomials(n-1, k), t, 1)
+ EulerianPolynomials(n-1, k)*(1+(k*n-1)*t)))
def T(n, k): return EulerianPolynomials(n, k).substitute(t=-1)
for n in (0..7): print([T(n, k) for k in (0..n)])
CROSSREFS
Sequence in context: A019200 A324820 A346085 * A087604 A090538 A371860
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Oct 07 2020
STATUS
approved