login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346085
Number T(n,k) of permutations of [n] such that k is the GCD of the cycle lengths; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
5
1, 0, 1, 0, 1, 1, 0, 4, 0, 2, 0, 15, 3, 0, 6, 0, 96, 0, 0, 0, 24, 0, 455, 105, 40, 0, 0, 120, 0, 4320, 0, 0, 0, 0, 0, 720, 0, 29295, 4725, 0, 1260, 0, 0, 0, 5040, 0, 300160, 0, 22400, 0, 0, 0, 0, 0, 40320, 0, 2663199, 530145, 0, 0, 72576, 0, 0, 0, 0, 362880
OFFSET
0,8
LINKS
Wikipedia, Permutation
FORMULA
Sum_{k=1..n} k * T(n,k) = A346066(n).
Sum_{prime p <= n} T(n,p) = A359951(n). - Alois P. Heinz, Jan 20 2023
EXAMPLE
T(3,1) = 4: (1)(23), (13)(2), (12)(3), (1)(2)(3).
T(4,4) = 6: (1234), (1243), (1324), (1342), (1423), (1432).
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 4, 0, 2;
0, 15, 3, 0, 6;
0, 96, 0, 0, 0, 24;
0, 455, 105, 40, 0, 0, 120;
0, 4320, 0, 0, 0, 0, 0, 720;
0, 29295, 4725, 0, 1260, 0, 0, 0, 5040;
0, 300160, 0, 22400, 0, 0, 0, 0, 0, 40320;
0, 2663199, 530145, 0, 0, 72576, 0, 0, 0, 0, 362880;
...
MAPLE
b:= proc(n, g) option remember; `if`(n=0, x^g, add((j-1)!
*b(n-j, igcd(g, j))*binomial(n-1, j-1), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
seq(T(n), n=0..12);
MATHEMATICA
b[n_, g_] := b[n, g] = If[n == 0, x^g, Sum[(j - 1)!*
b[n - j, GCD[g, j]] Binomial[n - 1, j - 1], {j, n}]];
T[n_] := CoefficientList[b[n, 0], x];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 30 2021, after Alois P. Heinz *)
CROSSREFS
Columns k=0-1 give: A000007, A079128.
Even bisection of column k=2 gives A346086.
Row sums give A000142.
T(2n,n) gives A110468(n-1) for n >= 1.
Sequence in context: A324815 A019200 A324820 * A337996 A087604 A090538
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 04 2021
STATUS
approved