login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346082
Number of cyclic n X n matrices over GF(2).
4
1, 2, 14, 412, 50832, 25517184, 51759986688, 422000664182784, 13794938575436906496, 1805965390215106718072832, 946278871976706458877777936384, 1983897413727786229545246093886881792, 16639646499680599124923569106989157705580544, 558292116984541859085729903695019486031085083557888
OFFSET
0,2
COMMENTS
An n X n matrix A is cyclic if there is a vector v in GF(2)^n such that {A^i(v) : i>=0} spans GF(2)^n. Equivalently if the characteristic polynomial of A is equal to the minimal polynomial.
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
Sum_{n>=0} a(n) x^n/A002884(n) = Product_{i>=1} (1 + x^i/((2^i-1)(1-x/2)^i))^A001037(i).
MATHEMATICA
nn = 13; A001037 = Table[1/n Sum[MoebiusMu[n/d] 2^d, {d, Divisors[n]}], {n, 1, nn}]; Table[Product[2^n - 2^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[
Series[Product[(1 + 2^i x^i/((2^i - 1) (2^i - x^i)))^ A001037[[i]], {i, 1, nn}], {x, 0, nn}], x]
CROSSREFS
Main diagonal of A347010.
Sequence in context: A102596 A354465 A050561 * A135865 A337073 A306815
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jul 04 2021
STATUS
approved