login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346080
Shadow transform of Fibonacci numbers.
0
0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 3, 1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 2, 2, 4, 1, 3, 2, 3, 2, 2, 3, 2, 1, 2, 1, 2, 3, 4, 1, 1, 2, 2, 2, 2, 6, 3, 2, 2, 2, 1, 5, 3, 3, 2, 2, 2, 1, 4, 3, 1, 2, 6, 2, 2, 1, 5, 2, 1, 2, 2, 1, 2, 1, 4, 2, 1, 4, 3, 9, 2, 2, 4
OFFSET
0,9
LINKS
Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150. See Definition 7 for the shadow transform.
OEIS Wiki, Shadow transform.
N. J. A. Sloane, Transforms.
MAPLE
a:= n-> add(`if`(modp(combinat[fibonacci](j), n)=0, 1, 0), j=0..n-1):
seq(a(n), n=0..100); # Alois P. Heinz, Jul 04 2021
MATHEMATICA
a[n_] := Sum[Boole @ Divisible[Fibonacci[i], n], {i, 0, n - 1}]; Array[a, 100, 0] (* Amiram Eldar, Jul 13 2021 *)
PROG
(Python)
from sympy import fibonacci
def a(n): return n - sum(fibonacci(k)%n != 0 for k in range(n))
print([a(n) for n in range(93)]) # Michael S. Branicky, Jul 04 2021
(PARI) a(n) = n - sum(k=0, n-1, sign(fibonacci(k)% n)); \\ Michel Marcus, Jul 04 2021
CROSSREFS
Cf. A000045 (Fibonacci numbers).
Sequence in context: A309414 A007421 A239228 * A103921 A115623 A279044
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 04 2021
STATUS
approved