login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279044
Irregular triangular array: T(n,i) = number of partitions of n having crossover part k; see Comments.
2
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 3, 2, 1, 1, 3, 4, 1, 3, 2, 1, 1, 3, 5, 2, 5, 3, 2, 1, 1, 5, 7, 5, 1, 5, 3, 2, 1, 1, 5, 9, 7, 2, 7, 5, 3, 2, 1, 1, 7, 12, 12, 5, 1, 7, 5, 3, 2, 1, 1, 7, 14, 16, 8, 2, 11, 7, 5, 3, 2, 1, 1, 11, 20, 20, 14, 5
OFFSET
1,8
COMMENTS
Suppose that P = [p(1),p(2),...,p(k)] is a partition of n, where p(1) >= p(2) >= ... >= p(k). The crossover index of P is the least h such that p(1) + ... + p(h) > = n/2. Equivalently for k > 1, p(1) + ... + p(h) >= p(h+1) + ... + p(k). The crossover part of P is p(h). The n-th row sum is the number of partitions of n, A000041. The bisections of column 1 are also given by A000041. The limit of the reversal of row n is given by A000041.
LINKS
EXAMPLE
First 14 rows (indexed by column 1):
1... 1
2... 1 1
3... 1 1 1
4... 1 2 1 1
5... 2 1 2 1 1
6... 2 2 3 2 1 1
7... 3 4 1 3 2 1 1
8... 3 5 2 5 3 2 1 1
9... 5 7 5 1 5 3 2 1 1
10... 5 9 7 2 7 5 3 2 1 1
11... 7 12 12 5 1 7 5 4 2 1 1
12... 7 14 15 8 2 11 7 5 3 2 1 1
13... 11 20 20 14 5 1 11 7 5 3 2 1 1
14... 11 24 25 20 8 2 15 11 7 5 3 2 1 1
MATHEMATICA
p[n_] := p[n] = IntegerPartitions[n]; t[n_, k_] := t[n, k] = p[n][[k]];
q[n_, k_] := q[n, k] = Select[Range[50], Sum[t[n, k][[i]], {i, 1, #}] >= n/2 &, 1];
u[n_] := u[n] = Flatten[Table[p[n][[k]][[q[n, k]]], {k, 1, Length[p[n]]}]];
c[n_, k_] := c[n, k] = Count[u[n], k];
v = Table[c[n, k], {n, 1, 25}, {k, 1, n}];
TableForm[v] (*A279044 array*)
Flatten[v] (*A279044 sequence*)
CROSSREFS
Cf. A000041, A276468 (crossover index array).
Sequence in context: A346080 A103921 A115623 * A134265 A182858 A175077
KEYWORD
nonn,easy,tabf
AUTHOR
Clark Kimberling, Dec 04 2016
STATUS
approved