|
|
A279042
|
|
Numbers k such that 2*k+1 and 10*k+1 are both triangular numbers (A000217).
|
|
1
|
|
|
4455, 30537, 461938302, 3166172226, 47894687058501, 328275068740587, 4965816943137597372, 34036215673995404100, 514865832250497683700195, 3528942913182916419190605, 53382319214430283898266055610, 365887859090594924500524938502
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 1..350
Index entries for linear recurrences with constant coefficients, signature (1,103682,-103682,-1,1).
|
|
FORMULA
|
a(n) = a(n-1) + 103682*a(n-2) - 103682*a(n-3) - a(n-4) + a(n-5) for n>5.
G.f.: 81*x*(55 + 322*x + 55*x^2) / ((1 - x)*(1 - 322*x + x^2)*(1 + 322*x + x^2)).
|
|
EXAMPLE
|
4455 is in the sequence because 2*4455+1 = 8911 and 10*4455+1 = 44551 are both triangular numbers.
|
|
MATHEMATICA
|
LinearRecurrence[{1, 103682, -103682, -1, 1}, {4455, 30537, 461938302, 3166172226, 47894687058501}, 20] (* Vincenzo Librandi, Dec 05 2016 *)
|
|
PROG
|
(PARI) Vec(81*x*(55 + 322*x + 55*x^2) / ((1 - x)*(1 - 322*x + x^2)*(1 + 322*x + x^2)) + O(x^15))
(PARI) isok(k) = ispolygonal(2*k+1, 3) & ispolygonal(10*k+1, 3)
|
|
CROSSREFS
|
Cf. A000217, A124174, A274579, A274603, A274680, A274756, A274832.
Sequence in context: A280485 A236906 A184611 * A253697 A253704 A235015
Adjacent sequences: A279039 A279040 A279041 * A279043 A279044 A279045
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Colin Barker, Dec 04 2016
|
|
STATUS
|
approved
|
|
|
|