login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279042
Numbers k such that 2*k+1 and 10*k+1 are both triangular numbers (A000217).
1
4455, 30537, 461938302, 3166172226, 47894687058501, 328275068740587, 4965816943137597372, 34036215673995404100, 514865832250497683700195, 3528942913182916419190605, 53382319214430283898266055610, 365887859090594924500524938502
OFFSET
1,1
FORMULA
a(n) = a(n-1) + 103682*a(n-2) - 103682*a(n-3) - a(n-4) + a(n-5) for n>5.
G.f.: 81*x*(55 + 322*x + 55*x^2) / ((1 - x)*(1 - 322*x + x^2)*(1 + 322*x + x^2)).
EXAMPLE
4455 is in the sequence because 2*4455+1 = 8911 and 10*4455+1 = 44551 are both triangular numbers.
MATHEMATICA
LinearRecurrence[{1, 103682, -103682, -1, 1}, {4455, 30537, 461938302, 3166172226, 47894687058501}, 20] (* Vincenzo Librandi, Dec 05 2016 *)
PROG
(PARI) Vec(81*x*(55 + 322*x + 55*x^2) / ((1 - x)*(1 - 322*x + x^2)*(1 + 322*x + x^2)) + O(x^15))
(PARI) isok(k) = ispolygonal(2*k+1, 3) & ispolygonal(10*k+1, 3)
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 04 2016
STATUS
approved