The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124174 Sophie Germain triangular numbers tr: 2*tr+1 is also a triangular number. 14
 0, 1, 10, 45, 351, 1540, 11935, 52326, 405450, 1777555, 13773376, 60384555, 467889345, 2051297326, 15894464365, 69683724540, 539943899076, 2367195337045, 18342198104230, 80414957735001, 623094791644755, 2731741367653000, 21166880717817451, 92798791542467010 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Sophie Germain triangular numbers are one of an infinite number of triangular number sets tr where 2*tn^2*tr + tn is a triangular number: tr and tn both also being triangular numbers with tn being held constant. For the present numbers, a(n) = tr, 8*(2*tr + 1) + 1 = 16*tr + 9 is also a square, the square root of which is 2*y+1 with y being the argument of the triangular number 2*tr + 1. Now 1/2*(y^2+y) = a^2 + a +1 from the definition of Sophie Germain triangular numbers. Multiply both sides by 4 and subtract 3 to get 2*y^2 + 2*y -3 = 4*a^2 + 4*a +1 (a square). Cf. A124124: Numbers y such that 2*y^2 + 2*y - 3 is a square. The values y are the same y such that 2*y+1 = sqrt(16*tr + 9). - Kenneth J Ramsey, Jun 25 2011 Values of n such that 2*n+1 and 9*n+1 are both triangular numbers. - Colin Barker, Jun 29 2016 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..100 Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1). FORMULA a(n) = (A124124(n)^2 + A124124(n)-2)/4. a(n) = 35*(a(n-2) - a(n-4)) + a(n-6). From Peter Pein, Dec 04 2006: (Start) a(n) = -11/32 + (-3 - 2*sqrt(2))^n/64 + (5*(3 - 2*sqrt(2))^n)/32 + (-3 - 2*sqrt(2))^n/(32*sqrt(2)) - (5*(3 - 2*sqrt(2))^n)/(32*sqrt(2)) + (-3 + 2*sqrt(2))^n/64 - (-3 + 2*sqrt(2))^n/(32*sqrt(2)) + (5*(3 + 2*sqrt(2))^n)/32 + (5*(3 + 2*sqrt(2))^n)/(32*sqrt(2)); O.g.f.: (x*(1 + 9*x + x^2))/((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)); E.g.f.: (-22*exp(x) + exp(-3*x+2*x*sqrt(2))*(1-sqrt(2)) - 5*exp(3*x-2*x*sqrt(2))*(-2 + sqrt(2)) + exp(-3*x-2*x*sqrt(2))*(1+sqrt(2)) + 5*exp(3*x+2*x*sqrt(2))*(2+sqrt(2)))/64.  (End) a(n) = 34*a(n-2) - a(n-4) + 11. - Kieren MacMillan, Nov 08 2008 a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5) with a(0)=0, a(1)=1, a(2)=10, a(3)=45, a(4)=351. - Harvey P. Dale, Sep 28 2011 a(n) = x*(x + 1)/2 where x = A216134(n) = (2*A000129(n) + (-1)^n*(A000129(2*floor(n/2) - 1) - (-1)^n)/2). - Raphie Frank, Jan 04 2013 a(n+2) = 1/2*((3/2*sqrt(8*a(n) + 1) + sqrt(16*a(n) + 9) - 1/2)*(3/2*sqrt(8*a(n) + 1) + sqrt(16*a(n) + 9) + 1/2)); a(0) = 0, a(1) = 1. - Raphie Frank, Jan 29 2013 MAPLE a:= n-> (Matrix([[10, 1, 0, 0, 1]]). Matrix(5, (i, j)-> if i=j-1 then 1 elif j=1 then [1, 34, -34, -1, 1][i] else 0 fi)^n)[1, 4]: seq(a(n), n=1..30); # Alois P. Heinz, Apr 27 2009 MATHEMATICA LinearRecurrence[{1, 34, -34, -1, 1}, {0, 1, 10, 45, 351}, 30] (* Harvey P. Dale, Sep 28 2011 *) PROG (MAGMA) I:=[0, 1, 10, 45]; [n le 4 select I[n] else 34*Self(n-2)-Self(n-4)+11: n in [1..30]]; // Vincenzo Librandi, Sep 29 2011 (PARI) a=[0, 1, 10, 45, 351]; for(n=5, 20, a=concat(a, a[#a]+34*a[#a-1]- 34*a[#a-2]-a[#a-3]+a[#a-4])); a \\ Charles R Greathouse IV, Sep 29 2011 CROSSREFS Cf. A005384, A077442, A124124. Cf. A216134, A000129. Sequence in context: A219709 A061772 A032165 * A264414 A188699 A044112 Adjacent sequences:  A124171 A124172 A124173 * A124175 A124176 A124177 KEYWORD nice,nonn,easy AUTHOR Zak Seidov, Dec 04 2006 EXTENSIONS More terms from Alois P. Heinz, Apr 27 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 13:24 EST 2020. Contains 331321 sequences. (Running on oeis4.)