login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347010
Triangular array read by rows. T(n,k) is the number of n X n matrices over GF(2) with minimal polynomial of degree k, n >= 0, 0 <= k <= n.
1
1, 0, 2, 0, 2, 14, 0, 2, 98, 412, 0, 2, 1542, 13160, 50832, 0, 2, 34782, 1147744, 6854720, 25517184, 0, 2, 1908734, 260411904, 2544075264, 14153094144, 51759986688, 0, 2, 166738046, 107691724672, 2985421682688, 21570911944704, 116285097148416, 422000664182784
OFFSET
0,3
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
EXAMPLE
1,
0, 2,
0, 2, 14,
0, 2, 98, 412,
0, 2, 1542, 13160, 50832
MATHEMATICA
nn = 8; q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}]; \[Nu] =
Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; L = Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]; g[u_, v_, deg_] :=
Total[Map[v^(Max[Prepend[#, 0]] deg) u^(deg Total[#])/aut[deg, #] &,
L]]; Table[Take[(Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[Product[g[u, v, deg]^\[Nu][[deg]], {deg, 1, nn}], {u, 0, nn}], {u, v}])[[n]], n], {n, 1, nn}] // Grid
CROSSREFS
Cf. A002416 (row sums), A346082 (main diagonal).
Sequence in context: A230813 A367074 A177113 * A281205 A285152 A077184
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Aug 10 2021
STATUS
approved