OFFSET
0,4
COMMENTS
From Jon E. Schoenfield, Aug 11 2021: (Start)
It follows from the definition that a(n) = floor(-log(e - Sum_{k=0..n} 1/k!)) = floor(-log(Sum_{k>=n+1} 1/k!)) = floor(f(n)) where, for large n, f(n) = (n + 3/2)*log(n) - n - zeta'(0) + (1/12)/n + 1/n^2 - (361/360)/n^3 - (3/2)/n^4 + (10081/1260)/n^5 - (61/6)/n^6 - 40/n^7 - ...
Conjecture: a(n) = floor((n + 3/2)*log(n) - n - zeta'(0) + (1/12)/n + 1/n^2 for n >= 4.
(End)
MATHEMATICA
Floor[Log[N[(1/(E - Sum[1/n!, {n, 0, #}] & /@ Range[50])), 2]]]
CROSSREFS
KEYWORD
sign
AUTHOR
Fred Patrick Doty, Aug 10 2021
EXTENSIONS
More terms from Jon E. Schoenfield, Aug 11 2021
STATUS
approved