login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number T(n,k) of permutations of [n] such that k is the GCD of the cycle lengths; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
5

%I #23 Mar 01 2024 14:57:42

%S 1,0,1,0,1,1,0,4,0,2,0,15,3,0,6,0,96,0,0,0,24,0,455,105,40,0,0,120,0,

%T 4320,0,0,0,0,0,720,0,29295,4725,0,1260,0,0,0,5040,0,300160,0,22400,0,

%U 0,0,0,0,40320,0,2663199,530145,0,0,72576,0,0,0,0,362880

%N Number T(n,k) of permutations of [n] such that k is the GCD of the cycle lengths; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

%H Alois P. Heinz, <a href="/A346085/b346085.txt">Rows n = 0..140, flattened</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>

%F Sum_{k=1..n} k * T(n,k) = A346066(n).

%F Sum_{prime p <= n} T(n,p) = A359951(n). - _Alois P. Heinz_, Jan 20 2023

%e T(3,1) = 4: (1)(23), (13)(2), (12)(3), (1)(2)(3).

%e T(4,4) = 6: (1234), (1243), (1324), (1342), (1423), (1432).

%e Triangle T(n,k) begins:

%e 1;

%e 0, 1;

%e 0, 1, 1;

%e 0, 4, 0, 2;

%e 0, 15, 3, 0, 6;

%e 0, 96, 0, 0, 0, 24;

%e 0, 455, 105, 40, 0, 0, 120;

%e 0, 4320, 0, 0, 0, 0, 0, 720;

%e 0, 29295, 4725, 0, 1260, 0, 0, 0, 5040;

%e 0, 300160, 0, 22400, 0, 0, 0, 0, 0, 40320;

%e 0, 2663199, 530145, 0, 0, 72576, 0, 0, 0, 0, 362880;

%e ...

%p b:= proc(n, g) option remember; `if`(n=0, x^g, add((j-1)!

%p *b(n-j, igcd(g, j))*binomial(n-1, j-1), j=1..n))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):

%p seq(T(n), n=0..12);

%t b[n_, g_] := b[n, g] = If[n == 0, x^g, Sum[(j - 1)!*

%t b[n - j, GCD[g, j]] Binomial[n - 1, j - 1], {j, n}]];

%t T[n_] := CoefficientList[b[n, 0], x];

%t Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Aug 30 2021, after _Alois P. Heinz_ *)

%Y Columns k=0-1 give: A000007, A079128.

%Y Even bisection of column k=2 gives A346086.

%Y Row sums give A000142.

%Y T(2n,n) gives A110468(n-1) for n >= 1.

%Y Cf. A057731, A145877, A346066, A359951.

%K nonn,tabl

%O 0,8

%A _Alois P. Heinz_, Jul 04 2021