The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A359951 Number of permutations of [n] such that the GCD of the cycle lengths is a prime. 2
 0, 0, 1, 2, 3, 24, 145, 720, 4725, 22400, 602721, 3628800, 67692625, 479001600, 12924021825, 103953833984, 2116670180625, 20922789888000, 959231402754625, 6402373705728000, 257071215652932681, 3242340687872000000, 142597230222616430625, 1124000727777607680000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..451 Wikipedia, Permutation FORMULA a(n) = Sum_{prime p <= n} A346085(n,p). a(p) = (p-1)! for prime p. EXAMPLE a(2) = 1: (12). a(3) = 2: (123), (132). a(4) = 3: (12)(34), (13)(24), (14)(23). a(5) = 24: (12345), (12354), (12435), (12453), (12534), (12543), (13245), (13254), (13425), (13452), (13524), (13542), (14235), (14253), (14325), (14352), (14523), (14532), (15234), (15243), (15324), (15342), (15423), (15432). MAPLE b:= proc(n, g) option remember; `if`(n=0, `if`(isprime(g), 1, 0), add(b(n-j, igcd(j, g))*(n-1)!/(n-j)!, j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..23); MATHEMATICA b[n_, g_] := b[n, g] = If[n == 0, If[PrimeQ[g], 1, 0], Sum[b[n - j, GCD[j, g]]*(n - 1)!/(n - j)!, {j, 1, n}]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 13 2023, after Alois P. Heinz *) CROSSREFS Cf. A000040, A000142, A005225, A079128, A214003, A346085, A346086. Sequence in context: A047157 A353165 A003221 * A013312 A013318 A372737 Adjacent sequences: A359948 A359949 A359950 * A359952 A359953 A359954 KEYWORD nonn AUTHOR Alois P. Heinz, Jan 19 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)