login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259616
Decimal expansion of J'_1(1), the first root of the derivative of the Bessel function J_1.
4
1, 8, 4, 1, 1, 8, 3, 7, 8, 1, 3, 4, 0, 6, 5, 9, 3, 0, 2, 6, 4, 3, 6, 2, 9, 5, 1, 3, 6, 4, 4, 4, 4, 3, 3, 2, 2, 4, 3, 6, 1, 2, 7, 0, 3, 9, 0, 9, 6, 8, 1, 9, 2, 6, 4, 3, 5, 0, 4, 6, 7, 7, 4, 2, 9, 2, 4, 2, 2, 9, 2, 0, 9, 8, 5, 9, 0, 6, 5, 3, 8, 6, 1, 8, 9, 3, 3, 5, 4, 1, 7, 2, 0, 0, 9, 3, 7, 8, 4, 8, 4, 1, 1, 1, 4
OFFSET
1,2
COMMENTS
Also root of the equation J_0(x) = J_2(x). - Vaclav Kotesovec, Jul 01 2015
LINKS
EXAMPLE
1.8411837813406593026436295136444433224361270390968192643504677429242292...
MATHEMATICA
FindRoot[D[BesselJ[1, x], x] == 0, {x, 2}, WorkingPrecision -> 105] // Last // Last // RealDigits // First
CROSSREFS
Cf. A115369 J'_0(1), A259617 J'_2(1), A259618 J'_3(1), A259619 J'_4(1), A259620 J'_5(1).
Sequence in context: A028577 A039662 A228496 * A247036 A371861 A202320
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved