login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of J'_1(1), the first root of the derivative of the Bessel function J_1.
4

%I #7 Jul 01 2015 08:42:28

%S 1,8,4,1,1,8,3,7,8,1,3,4,0,6,5,9,3,0,2,6,4,3,6,2,9,5,1,3,6,4,4,4,4,3,

%T 3,2,2,4,3,6,1,2,7,0,3,9,0,9,6,8,1,9,2,6,4,3,5,0,4,6,7,7,4,2,9,2,4,2,

%U 2,9,2,0,9,8,5,9,0,6,5,3,8,6,1,8,9,3,3,5,4,1,7,2,0,0,9,3,7,8,4,8,4,1,1,1,4

%N Decimal expansion of J'_1(1), the first root of the derivative of the Bessel function J_1.

%C Also root of the equation J_0(x) = J_2(x). - _Vaclav Kotesovec_, Jul 01 2015

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/BesselFunctionZeros.html">Bessel Function Zeros</a>

%e 1.8411837813406593026436295136444433224361270390968192643504677429242292...

%t FindRoot[D[BesselJ[1, x], x] == 0, {x, 2}, WorkingPrecision -> 105] // Last // Last // RealDigits // First

%Y Cf. A115369 J'_0(1), A259617 J'_2(1), A259618 J'_3(1), A259619 J'_4(1), A259620 J'_5(1).

%K nonn,cons,easy

%O 1,2

%A _Jean-François Alcover_, Jul 01 2015