login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A243908
Johannes Kepler's polyhedron inscribing constant.
1
7, 0, 1, 6, 3, 9, 7, 0, 0, 3, 7, 0, 3, 3, 9, 2, 1, 4, 2, 8, 2, 8, 4, 0, 5, 4, 3, 5, 1, 5, 7, 4, 4, 6, 2, 7, 4, 7, 2, 6, 8, 4, 2, 0, 1, 4, 2, 3, 9, 2, 9, 7, 3, 6, 9, 2, 9, 0, 2, 1, 8, 1, 4, 1, 3, 4, 8, 9, 1, 9, 8, 8, 9, 8, 3, 3, 7, 8, 5, 0, 3, 6, 1, 6, 9, 5, 0, 2, 8, 2, 7, 2, 2, 7, 8, 2, 5, 5, 9, 2, 5, 4, 7, 4, 1, 9, 5, 2
OFFSET
-1,1
COMMENTS
Decimal expansion of (5 + 2*sqrt(5))/135.
The finite solid analogy to the plane polygon inscribing constant (A085365).
The five Platonic solids are the tetrahedron, the hexahedron (or cube), the octahedron, the dodecahedron and the icosahedron.
The geometric interpretation is as follows. Begin with a unit sphere. Inscribe a tetrahedron and then inscribe a sphere. Inscribe a cube and then inscribe a sphere. Inscribe an octahedron and then inscribe a sphere. Inscribe a dodecahedron and then inscribe a sphere. Inscribe an icosahedron and then inscribe a sphere. This constant is the radius of this last sphere. Actually, the order in which the five solids are inscribed has no effect on the resulting constant.
LINKS
Domingo H. A. and Omar E. Pol, Circunferencias concéntricas y polígonos regulares inscritos, gaussianos, Nov 16 2007, 18:46, 23:28
Wikipedia, Platonic Solids
Wikipedia, Johannes Kepler
FORMULA
Equals 1/A211174 = 1/(9*(15 - 6*sqrt(5))).
EXAMPLE
0.070163970037033921428284054351574462747268420142392973692902181413489198898...
MAPLE
Digits:=100: evalf((5+2*sqrt(5))/135); # Wesley Ivan Hurt, Sep 05 2014
MATHEMATICA
RealDigits[(5 + 2 Sqrt[5])/135, 10, 100][[1]] (* Wesley Ivan Hurt, Sep 05 2014 *)
PROG
(PARI) first(n)=digits(floor(10^(n+1)*(5+2*sqrt(5))/135)) \\ Edward Jiang, Sep 05 2014
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Omar E. Pol, Jun 14 2014
STATUS
approved