login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243909
Least number k > 0 such that 2^k contains exactly n different digits.
0
1, 4, 7, 10, 14, 21, 20, 37, 29, 68
OFFSET
1,2
EXAMPLE
2^7 = 128 is the first power of 2 with 3 different digits. Thus a(3) = 7.
MATHEMATICA
dd[n_]:=Count[DigitCount[2^n], _?(#>0&)]; Table[SelectFirst[Table[{n, dd[n]}, {n, 70}], #[[2]] == k&], {k, 10}][[All, 1]] (* Harvey P. Dale, Jan 22 2023 *)
PROG
(PARI) a(n)=for(k=1, 10^3, st=2^k; if(#digits(st)>=n, c=0; for(i=0, 9, for(j=1, #digits(st), if(digits(st)[j]==i, c++; break))); if(c==n, return(k))))
n=1; while(n<11, print1(a(n), ", "); n++)
CROSSREFS
Sequence in context: A310696 A310697 A133497 * A187334 A310698 A310699
KEYWORD
nonn,base,full,fini
AUTHOR
Derek Orr, Jun 14 2014
STATUS
approved