login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of x satisfying x+2=exp(-x).
9

%I #23 Nov 21 2024 15:33:09

%S 4,4,2,8,5,4,4,0,1,0,0,2,3,8,8,5,8,3,1,4,1,3,2,7,9,9,9,9,9,9,3,3,6,8,

%T 1,9,7,1,6,2,6,2,1,2,9,3,7,3,4,7,9,6,8,4,7,1,7,7,3,3,0,7,6,9,8,2,0,1,

%U 5,9,9,2,1,4,2,0,0,4,0,7,8,4,9,0,8,6,5,9,2,4,8,1,7,8,7,3,9,5,5

%N Decimal expansion of x satisfying x+2=exp(-x).

%C For many choices of u and v, there is just one value of x satisfying u*x+v=e^(-x). Guide to related sequences, with graphs included in Mathematica programs:

%C u.... v.... x

%C 1.... 2.... A202322

%C 1.... 3.... A202323

%C 2.... 2.... A202353

%C 2.... e.... A202354

%C 1... -1.... A202355

%C 1.... 0.... A030178

%C 2.... 0.... A202356

%C e.... 0.... A202357

%C 3.... 0.... A202392

%C Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.

%C For an example related to A202322, take f(x,u,v)=x+2-e^(-x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

%H G. C. Greubel, <a href="/A202322/b202322.txt">Table of n, a(n) for n = 0..5000</a>

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F x(u,v) = W(e^(v/u)/u) - v/u, where W = ProductLog = LambertW. - _Jean-François Alcover_, Feb 14 2013

%F Equals A226571 - 2 = LambertW(exp(2))-2. - _Vaclav Kotesovec_, Jan 09 2014

%e x=-0.442854401002388583141327999999336819716262...

%t (* Program 1: A202322 *)

%t u = 1; v = 2;

%t f[x_] := u*x + v; g[x_] := E^-x

%t Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, -.45, -.44}, WorkingPrecision -> 110]

%t RealDigits[r] (* A202322 *)

%t (* Program 2: implicit surface of u*x+v=e^(-x) *)

%t f[{x_, u_, v_}] := u*x + v - E^-x;

%t t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 1, 2}]}, {v, 1, 3}, {u, 1, 3}];

%t ListPlot3D[Flatten[t, 1]] (* for A202322 *)

%t RealDigits[ ProductLog[E^2] - 2, 10, 99] // First (* _Jean-François Alcover_, Feb 14 2013 *)

%o (PARI) lambertw(exp(2)) - 2 \\ _G. C. Greubel_, Jun 10 2017

%Y Cf. A202320.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Dec 18 2011

%E Digits from a(84) on corrected by _Jean-François Alcover_, Feb 14 2013