login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A061242
Primes of the form 9*k - 1.
16
17, 53, 71, 89, 107, 179, 197, 233, 251, 269, 359, 431, 449, 467, 503, 521, 557, 593, 647, 683, 701, 719, 773, 809, 827, 863, 881, 953, 971, 1061, 1097, 1151, 1187, 1223, 1259, 1277, 1367, 1439, 1493, 1511, 1583, 1601, 1619, 1637, 1709, 1871, 1889, 1907
OFFSET
1,1
COMMENTS
Or, primes of the form 18k - 1. Corresponding values of k are in A138918. - Zak Seidov, Apr 03 2008
From Doug Bell, Mar 23 2009: (Start)
Conjecture: if a(n) = 9x - 1, the integer formed by the repeating digits in the decimal fraction x/a(n) is the smallest integer such that rotating the digits to the left produces a number which is (x+1)/x times larger.
Example: x = 2, a(n) = 17: 2/17 = 0.1176470588235294... repeating with a cycle of 16.
1176470588235294 * 3/2 = 1764705882352941, which is 1176470588235294 rotated to the left.
An additional conjecture is that the values of x from this sequence are the only values where rotating an integer one to the left produces a value (x+1)/x times as large. (End)
The last conjecture is false. For example, for x = 3 we have 230769*(4/3) = 307692, but 9*3-1 = 26 is not in the sequence. - Giovanni Resta, Jul 28 2015
Conjecture: Primes p such that ((x+1)^9-1)/x has 4 irreducible factors of degree 2 over GF(p). - Federico Provvedi, Jun 27 2018
LINKS
FORMULA
A010888(a(n)) = 8. - Reinhard Zumkeller, Feb 25 2005
MAPLE
select(isprime, [seq(18*i-1, i=1..1000)]); # Robert Israel, Sep 03 2014
MATHEMATICA
Select[ Range[ 2500 ], PrimeQ[ # ] && Mod[ #, 9 ] == 8 & ]
Select[9*Range[300] - 1, PrimeQ]
PROG
(Python)
from sympy import prime
A061242 = [p for p in (prime(n) for n in range(1, 10**3)) if not (p+1) % 18]
# Chai Wah Wu, Sep 02 2014
(Magma) [a: n in [0..250] | IsPrime(a) where a is 9*n - 1 ]; // Vincenzo Librandi, Jun 07 2015
(PARI) select( {is(n)=n%9==8&&isprime(n)}, primes([1, 2000])) \\ M. F. Hasler, Mar 10 2022
CROSSREFS
Cf. A061237, A061238, A061239, A061240, A061241 (p mod 9 = 1, 2, 4, 5 and 7), A138918 (18n - 1 is prime), A258663 (9n - 1 is prime).
Can be partitioned in disjoint subsequences A062343 (primes with sum of digits s = 8), A106758 (s = 17), A106764 (s = 26), A106770 (s = 35), A106776 (s = 44), A106782 (s = 53), A107617 (s = 62), etc.
Sequence in context: A213997 A062342 A295869 * A062343 A176254 A287311
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Apr 23 2001
EXTENSIONS
More terms from Robert G. Wilson v, May 10 2001
Edited by N. J. A. Sloane at the suggestion of R. J. Mathar, Apr 30 2008
Edited by M. F. Hasler, Mar 10 2022
STATUS
approved