OFFSET
0,1
COMMENTS
In general, for s > 0, Product_{k>=1} (1 + 1/A007528(k)^(2*s+1)) / (1 - 1/A007528(k)^(2*s+1)) = (1 - 1/2^(2*s + 1)) * (3^(2*s + 1) - 1) * (2*s)! * zeta(2*s + 1) / (sqrt(3) * A002114(s) * Pi^(2*s + 1)).
LINKS
R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015, p. 26 (case 6 5 3 = 1/A334480).
EXAMPLE
0.990884145525213356563403173559432751643483121750... = 1/1.0091997177631243951237...
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 02 2020
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 27 2020
STATUS
approved