login
A132231
Primes congruent to 7 (mod 30).
15
7, 37, 67, 97, 127, 157, 277, 307, 337, 367, 397, 457, 487, 547, 577, 607, 727, 757, 787, 877, 907, 937, 967, 997, 1087, 1117, 1237, 1297, 1327, 1447, 1567, 1597, 1627, 1657, 1747, 1777, 1867, 1987, 2017, 2137, 2287, 2347, 2377, 2437, 2467, 2557, 2617, 2647
OFFSET
1,1
COMMENTS
Primes ending in 7 with (SOD-1)/3 integer where SOD is sum of digits. - Ki Punches, Feb 07 2009
Intersection of A030432 and A002476. - Ray Chandler, Apr 07 2009
Only from 4927 on, there are more composite numbers than primes in {7+30k}, see A227869. - M. F. Hasler, Nov 02 2013
Terms are non-twin primes A007510, except for 7. - Jonathan Sondow, Oct 27 2017
FORMULA
a(n) = A158573(n)*30 + 7. - Ray Chandler, Apr 07 2009
a(n) = A211890(4,n-1) for n <= 5. - Reinhard Zumkeller, Jul 13 2012
MATHEMATICA
Select[30*Range[0, 100]+7, PrimeQ] (* Harvey P. Dale, Feb 01 2012 *)
Select[Prime[Range[1000]], MemberQ[{7}, Mod[#, 30]]&] (* Vincenzo Librandi, Aug 14 2012 *)
PROG
(Haskell)
a132231 n = a132231_list !! (n-1)
a132231_list = [x | k <- [0..], let x = 30 * k + 7, a010051' x == 1]
-- Reinhard Zumkeller, Jul 13 2012
(Magma) [p: p in PrimesUpTo(3000) | p mod 30 eq 7 ]; // Vincenzo Librandi, Aug 14 2012
(PARI) forstep(p=7, 1999, 30, isprime(p)&&print1(p", ")) \\ M. F. Hasler, Nov 02 2013
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Aug 15 2007
EXTENSIONS
Extended by Ray Chandler, Apr 07 2009
STATUS
approved