%I M3809 #156 Jun 28 2021 16:03:10
%S 5,11,17,23,29,41,47,53,59,71,83,89,101,107,113,131,137,149,167,173,
%T 179,191,197,227,233,239,251,257,263,269,281,293,311,317,347,353,359,
%U 383,389,401,419,431,443,449,461,467,479,491,503,509,521,557,563,569,587
%N Primes of the form 6k-1.
%C For values of k see A024898.
%C Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - _Cino Hilliard_, Nov 12 2008
%C a(n) = A211890(3,n-1) for n <= 4. - _Reinhard Zumkeller_, Jul 13 2012
%C There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - _Ralf Steiner_, May 17 2018
%C From _Bernard Schott_, Feb 14 2019: (Start)
%C A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
%C {2,3} Union A002476 Union {this sequence} = A000040.
%C Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
%C Except for 3, all the lesser of twin primes are also of the form 6k-1.
%C Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
%C For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - _Pedro Caceres_, Apr 06 2019
%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
%D A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
%D Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.
%H T. D. Noe, <a href="/A007528/b007528.txt">Table of n, a(n) for n = 1..1000</a>
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H F. S. Carey, <a href="https://archive.org/stream/proceedingslond00unkngoog#page/n317/mode/2up">On some cases of the Solutions of the Congruence z^p^(n-1)=1, mod p</a>, Proceedings of the London Mathematical Society, Volume s1-33, Issue 1, November 1900, Pages 294-312.
%H Amelia Carolina Sparavigna, <a href="https://doi.org/10.5281/zenodo.4641886">The Pentagonal Numbers and their Link to an Integer Sequence which contains the Primes of Form 6n-1</a>, Politecnico di Torino (Italy, 2021).
%H Amelia Carolina Sparavigna, <a href="https://doi.org/10.5281/zenodo.4662489">Binary operations inspired by generalized entropies applied to figurate numbers</a>, Politecnico di Torino (Italy, 2021).
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions">Dirichlet's theorem on arithmetic progressions</a>.
%F A003627 \ {2}. - _R. J. Mathar_, Oct 28 2008
%F Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - _Dimitris Valianatos_, Feb 11 2020
%F From _Vaclav Kotesovec_, May 02 2020: (Start)
%F Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
%F Product_{k>=1} (1 + 1/a(k)^2) = A334482.
%F Product_{k>=1} (1 - 1/a(k)^3) = A334480.
%F Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
%F Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - _Wolfdieter Lang_, Mar 03 2021
%p select(isprime,[seq(6*n-1,n=1..100)]); # _Muniru A Asiru_, May 19 2018
%t Select[6 Range[100]-1,PrimeQ] (* _Harvey P. Dale_, Feb 14 2011 *)
%o (PARI) forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ _Charles R Greathouse IV_, Jul 15 2011
%o (Haskell)
%o a007528 n = a007528_list !! (n-1)
%o a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
%o -- _Reinhard Zumkeller_, Jul 13 2012
%o (GAP) Filtered(List([1..100],n->6*n-1),IsPrime); # _Muniru A Asiru_, May 19 2018
%Y Cf. A003627, A010051, A117047, A132231, A214360, A057145.
%Y Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
%Y Cf. A034694 (smallest prime == 1 (mod n)).
%Y Cf. A038700 (smallest prime == n-1 (mod n)).
%Y Cf. A038026 (largest possible value of smallest prime == r (mod n)).
%Y Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).
%Y Cf. A048265, A324076.
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_