|
|
A079545
|
|
Primes of the form x^2 + y^2 + 1 with x,y >= 0.
|
|
10
|
|
|
2, 3, 5, 11, 17, 19, 37, 41, 53, 59, 73, 83, 101, 107, 131, 137, 149, 163, 179, 181, 197, 227, 233, 251, 257, 293, 307, 347, 389, 401, 443, 467, 491, 521, 523, 563, 577, 587, 593, 613, 641, 677, 739, 773, 809, 811, 821, 883
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Bredihin proves that this sequence is infinite. Motohashi improves the upper and lower bounds. - Charles R Greathouse IV, Sep 16 2011
Sun & Pan prove that there are arbitrarily long arithmetic progressions in this sequence. - Charles R Greathouse IV, Mar 03 2018
For this sequence in short intervals, see Wu and Matomäki; for its Goldbach problem, see Teräväinen. - Charles R Greathouse IV, Oct 10 2018
|
|
LINKS
|
|
|
FORMULA
|
Iwaniec proves that a(n) ≍ n (log n)^(3/2), that is, n (log n)^(3/2) << a(n) << n (log n)^(3/2). - Charles R Greathouse IV, Mar 06 2018
|
|
EXAMPLE
|
17 = 0^2 + 4^2 + 1 is prime so in this sequence.
|
|
MATHEMATICA
|
|
|
PROG
|
(PARI) list(lim)={
my(A, t, v=List([2]));
forstep(a=2, sqrt(lim-1), 2,
A=a^2+1;
forstep(b=0, min(a, sqrt(lim-A)), 2,
if(isprime(t=A+b^2), listput(v, t))
)
);
forstep(a=1, sqrt(lim-2), 2,
A=a^2+1;
forstep(b=1, min(a, sqrt(lim-A)), 2,
if(isprime(t=A+b^2), listput(v, t))
)
);
vecsort(Vec(v), , 8)
(PARI) is(n)=for(x=sqrtint(n\2), sqrtint(n-1), if(issquare(n-x^2-1), return(isprime(n)))); 0 \\ Charles R Greathouse IV, Jun 12 2015
(PARI) B=bnfinit('x^2+1);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|