The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A079545 Primes of the form x^2 + y^2 + 1 with x,y >= 0. 10
 2, 3, 5, 11, 17, 19, 37, 41, 53, 59, 73, 83, 101, 107, 131, 137, 149, 163, 179, 181, 197, 227, 233, 251, 257, 293, 307, 347, 389, 401, 443, 467, 491, 521, 523, 563, 577, 587, 593, 613, 641, 677, 739, 773, 809, 811, 821, 883 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Bredihin proves that this sequence is infinite. Motohashi improves the upper and lower bounds. - Charles R Greathouse IV, Sep 16 2011 Sun & Pan prove that there are arbitrarily long arithmetic progressions in this sequence. - Charles R Greathouse IV, Mar 03 2018 For this sequence in short intervals, see Wu and Matomäki; for its Goldbach problem, see Teräväinen. - Charles R Greathouse IV, Oct 10 2018 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 B. M. Bredihin, Binary additive problems of indeterminate type II. Analogue of the problem of Hardy and Littlewood (in Russian). Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya 27 (1963), pp. 577-612. M. N. Huxley and H. Iwaniec, Bombieri's theorem in short intervals, Mathematika 22 (1975), pp. 188-194. Henryk Iwaniec, Primes of the type φ(x, y) + A where φ is a quadratic form, Acta Arithmetica 21 (1972), pp. 203-234. Kaisa Matomäki, Prime numbers of the form p = m^2 + n^2 + 1 in short intervals, Acta Arithmetica 128 (2007), pp. 193-200. Y. Motohashi, On the distribution of prime numbers which are of the form x^2 + y^2 + 1. Acta Arithmetica 16 (1969), pp. 351-364. Y. Motohashi, On the distribution of prime numbers which are of the form x^2 + y^2 + 1. II", Acta Mathematica Academiae Scientiarum Hungaricae 22 (1971), pp. 207-210. Yu-Chen Sun and Hao Pan, The Green-Tao theorem for primes of the form x^2 + y^2 + 1, arXiv:1708.08629 [math.NT], 2017. Joni Teräväinen, The Goldbach problem for primes that are sums of two squares plus one, Mathematika 64 (2018), pp. 20-70. arXiv:1611.08585 [math.NT], 2016-2017. J. Wu, Primes of the form p = 1 + m^2 + n^2 in short intervals, Proceedings of the American Mathematical Society 126 (1998), pp. 1-8. FORMULA Iwaniec proves that n (log n)^(3/2) << a(n) << n (log n)^(3/2). - Charles R Greathouse IV, Mar 06 2018 EXAMPLE 17 = 0^2 + 4^2 + 1 is prime so in this sequence. MATHEMATICA Select[Select[Range, SquaresR[2, #] != 0&]+1, PrimeQ] (* Jean-François Alcover, Aug 31 2018 *) PROG (PARI) list(lim)={     my(A, t, v=List());     forstep(a=2, sqrt(lim-1), 2,         A=a^2+1;         forstep(b=0, min(a, sqrt(lim-A)), 2,             if(isprime(t=A+b^2), listput(v, t))         )     );     forstep(a=1, sqrt(lim-2), 2,         A=a^2+1;         forstep(b=1, min(a, sqrt(lim-A)), 2,             if(isprime(t=A+b^2), listput(v, t))         )     );     vecsort(Vec(v), , 8) }; \\ Charles R Greathouse IV, Sep 16 2011 (PARI) is(n)=for(x=sqrtint(n\2), sqrtint(n-1), if(issquare(n-x^2-1), return(isprime(n)))); 0 \\ Charles R Greathouse IV, Jun 12 2015 (PARI) B=bnfinit('x^2+1); is(n)=!!#bnfisintnorm(B, n-1) && isprime(n) \\ Charles R Greathouse IV, Jun 13 2015 CROSSREFS Primes in A166687. Cf. A079544, A079739, A079740. Sequence in context: A245639 A147813 A274386 * A154755 A040095 A040028 Adjacent sequences:  A079542 A079543 A079544 * A079546 A079547 A079548 KEYWORD nonn,changed AUTHOR N. J. A. Sloane, Jan 23 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 17:33 EDT 2020. Contains 334831 sequences. (Running on oeis4.)