OFFSET
1,1
COMMENTS
If k is even and a(k) = 0 then sigma(2*k) >= 4*k, i.e., 2*k is nondeficient (A023196) (Makowski, 1987). - Amiram Eldar, Dec 05 2023
REFERENCES
Andrzej Makowski, Remarks on some problems in the elementary theory of numbers, Acta Math. Univ. Comenian 50/51 (1987), 277-281.
József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici, Handbook of Number Theory I, Springer, 2005, Chapter III, p. 88.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
FORMULA
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/12 - 12/Pi^2 = -0.393387... . - Amiram Eldar, Dec 05 2023
MATHEMATICA
Table[DivisorSigma[1, n]-4*EulerPhi[n], {n, 80}] (* Harvey P. Dale, Dec 08 2014 *)
PROG
(PARI) vector(80, n, sigma(n) - 4*eulerphi(n)) \\ G. C. Greubel, Jun 19 2019
(Magma) [DivisorSigma(1, n) - 4*EulerPhi(n): n in [1..80]]; // G. C. Greubel, Jun 19 2019
(Sage) [sigma(n, 1) - 4*euler_phi(n) for n in (1..80)] # G. C. Greubel, Jun 19 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Jan 23 2003
STATUS
approved