login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A321743
Sum of coefficients of monomial symmetric functions in the elementary symmetric function of the integer partition with Heinz number n.
1
1, 1, 1, 3, 1, 4, 1, 10, 9, 5, 1, 20, 1, 6, 14, 47, 1, 50, 1, 30, 20, 7, 1, 110, 29, 8, 157, 42, 1, 97, 1, 246, 27, 9, 49, 338, 1, 10, 35, 206, 1, 159, 1, 56, 353, 11, 1, 732, 99, 224, 44, 72, 1, 1184, 76, 332, 54, 12, 1, 743, 1, 13, 677, 1602, 111, 242, 1, 90
OFFSET
1,4
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the number of size-preserving permutations of set multipartitions (multisets of sets) of a multiset (such as row n of A305936) whose multiplicities are the prime indices of n.
EXAMPLE
The sum of coefficients of e(211) = 2m(22) + m(31) + 5m(211) + 12m(1111) is a(12) = 20.
The a(2) = 1 through a(9) = 9 size-preserving permutations of set multipartitions:
{1} {1}{1} {12} {1}{1}{1} {1}{12} {1}{1}{1}{1} {123} {12}{12}
{1}{2} {1}{1}{2} {1}{23} {1}{2}{12}
{2}{1} {1}{2}{1} {2}{13} {2}{1}{12}
{2}{1}{1} {3}{12} {1}{1}{2}{2}
{1}{2}{3} {1}{2}{1}{2}
{1}{3}{2} {1}{2}{2}{1}
{2}{1}{3} {2}{1}{1}{2}
{2}{3}{1} {2}{1}{2}{1}
{3}{1}{2} {2}{2}{1}{1}
{3}{2}{1}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]], {#1}]&, If[n==1, {}, Flatten[Cases[FactorInteger[n]//Reverse, {p_, k_}:>Table[PrimePi[p], {k}]]]]];
Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn, Greater]]/Times@@Factorial/@Length/@Split[mtn], {mtn, Select[mps[nrmptn[n]], And@@UnsameQ@@@#&]}], {n, 30}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 19 2018
STATUS
approved