login
A321741
Product of the first n terms of A007318 (Pascal), read as a sequence.
0
1, 1, 1, 1, 2, 2, 2, 6, 18, 18, 18, 72, 432, 1728, 1728, 1728, 8640, 86400, 864000, 4320000, 4320000, 4320000, 25920000, 388800000, 7776000000, 116640000000, 699840000000, 699840000000, 699840000000, 4898880000000, 102876480000000, 3600676800000000, 126023688000000000, 2646497448000000000, 18525482136000000000, 18525482136000000000
OFFSET
1,5
FORMULA
a(n) = Product_{j=0..n-1} P(n), where P(n) = A007318(n) (as a sequence). - Wolfdieter Lang, Jan 25 2019
EXAMPLE
The 10th term is 18 because the first 10 terms of Pascal's Triangle by row are 1,1,1,1,2,1,1,3,3,1 and 1*1*1*1*2*1*1*3*3*1=18.
MATHEMATICA
FoldList[Times, 1, Rest[Flatten[Table[Binomial[n, k], {n, 0, 7}, {k, 0, n}]]]] (* Amiram Eldar, Nov 18 2018 *)
PROG
(PARI) lista(nn) = {my(i=0, j=0, p=1); for (n=1, nn, p *= binomial(i, j); print1(p, ", "); j++; if (j > i, j = 0; i++); ); } \\ Michel Marcus, Jan 25 2019
CROSSREFS
Cf. A007318, A163866 (partial sums).
Sequence in context: A007039 A025248 A213170 * A101416 A371919 A098920
KEYWORD
nonn,easy
AUTHOR
Kei Ryan, Nov 17 2018
STATUS
approved