login
Product of the first n terms of A007318 (Pascal), read as a sequence.
0

%I #24 Jan 26 2019 05:07:12

%S 1,1,1,1,2,2,2,6,18,18,18,72,432,1728,1728,1728,8640,86400,864000,

%T 4320000,4320000,4320000,25920000,388800000,7776000000,116640000000,

%U 699840000000,699840000000,699840000000,4898880000000,102876480000000,3600676800000000,126023688000000000,2646497448000000000,18525482136000000000,18525482136000000000

%N Product of the first n terms of A007318 (Pascal), read as a sequence.

%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>

%F a(n) = Product_{j=0..n-1} P(n), where P(n) = A007318(n) (as a sequence). - _Wolfdieter Lang_, Jan 25 2019

%e The 10th term is 18 because the first 10 terms of Pascal's Triangle by row are 1,1,1,1,2,1,1,3,3,1 and 1*1*1*1*2*1*1*3*3*1=18.

%t FoldList[Times, 1, Rest[Flatten[Table[Binomial[n, k], {n, 0, 7}, {k, 0, n}]]]] (* _Amiram Eldar_, Nov 18 2018 *)

%o (PARI) lista(nn) = {my(i=0, j=0, p=1); for (n=1, nn, p *= binomial(i, j); print1(p, ", "); j++; if (j > i, j = 0; i++););} \\ _Michel Marcus_, Jan 25 2019

%Y Cf. A007318, A163866 (partial sums).

%K nonn,easy

%O 1,5

%A _Kei Ryan_, Nov 17 2018