login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131632
Triangle T(n,k) read by rows = number of partitions of n-set into k blocks with distinct sizes, k = 1..A003056(n).
16
1, 1, 1, 3, 1, 4, 1, 15, 1, 21, 60, 1, 63, 105, 1, 92, 448, 1, 255, 2016, 1, 385, 4980, 12600, 1, 1023, 15675, 27720, 1, 1585, 61644, 138600, 1, 4095, 155155, 643500, 1, 6475, 482573, 4408404, 1, 16383, 1733550, 12687675, 37837800, 1, 26332, 4549808, 60780720
OFFSET
1,4
COMMENTS
Row sums = A007837.
Sum k! * T(n,k) = A032011.
Sum k * T(n,k) = A131623. - Geoffrey Critzer, Aug 30 2012.
T(n,k) is also the number of words w of length n over a k-ary alphabet {a1,a2,...,ak} with #(w,a1) > #(w,a2) > ... > #(w,ak) > 0, where #(w,x) counts the letters x in word w. T(5,2) = 15: aaaab, aaaba, aaabb, aabaa, aabab, aabba, abaaa, abaab, ababa, abbaa, baaaa, baaab, baaba, babaa, bbaaa. - Alois P. Heinz, Jun 21 2013
LINKS
FORMULA
E.g.f.: Product_{n>=1} (1+y*x^n/n!).
T(A000217(n),n) = A022915(n). - Alois P. Heinz, Jul 03 2018
EXAMPLE
Triangle T(n,k)begins:
1;
1;
1, 3;
1, 4;
1, 15;
1, 21, 60;
1, 63, 105;
1, 92, 448;
1, 255, 2016;
1, 385, 4980, 12600;
1, 1023, 15675, 27720;
1, 1585, 61644, 138600;
1, 4095, 155155, 643500;
1, 6475, 482573, 4408404;
1, 16383, 1733550, 12687675, 37837800;
...
MAPLE
b:= proc(n, i, t, v) option remember; `if`(t=1, 1/(n+v)!,
add(b(n-j, j, t-1, v+1)/(j+v)!, j=i..n/t))
end:
T:= (n, k)->`if`(k*(k+1)/2>n, 0, n!*b(n-k*(k+1)/2, 0, k, 1)):
seq(seq(T(n, k), k=1..floor(sqrt(2+2*n)-1/2)), n=1..20);
# Alois P. Heinz, Jun 21 2013
# second Maple program:
b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, 1, b(n, i-1)+binomial(n, i)*
expand(x*b(n-i, min(n-i, i-1)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
seq(T(n), n=1..20); # Alois P. Heinz, Sep 27 2019
MATHEMATICA
nn=10; p=Product[1+y x^i/i!, {i, 1, nn}]; Range[0, nn]! CoefficientList[ Series[p, {x, 0, nn}], {x, y}]//Grid (* Geoffrey Critzer, Aug 30 2012 *)
KEYWORD
nonn,tabf
AUTHOR
Vladeta Jovovic, Sep 04 2007
STATUS
approved