login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A226873
Number A(n,k) of n-length words w over a k-ary alphabet {a1,a2,...,ak} such that #(w,a1) >= #(w,a2) >= ... >= #(w,ak) >= 0, where #(w,x) counts the letters x in word w; square array A(n,k), n>=0, k>=0, read by antidiagonals.
27
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 3, 4, 1, 0, 1, 1, 3, 10, 11, 1, 0, 1, 1, 3, 10, 23, 16, 1, 0, 1, 1, 3, 10, 47, 66, 42, 1, 0, 1, 1, 3, 10, 47, 126, 222, 64, 1, 0, 1, 1, 3, 10, 47, 246, 522, 561, 163, 1, 0, 1, 1, 3, 10, 47, 246, 882, 1821, 1647, 256, 1, 0
OFFSET
0,13
LINKS
FORMULA
A(n,k) = Sum_{i=0..min(n,k)} A226874(n,i).
EXAMPLE
A(4,3) = 23: aaaa, aaab, aaba, aabb, aabc, aacb, abaa, abab, abac, abba, abca, acab, acba, baaa, baab, baac, baba, baca, bbaa, bcaa, caab, caba, cbaa.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 3, 3, 3, 3, 3, 3, ...
0, 1, 4, 10, 10, 10, 10, 10, ...
0, 1, 11, 23, 47, 47, 47, 47, ...
0, 1, 16, 66, 126, 246, 246, 246, ...
0, 1, 42, 222, 522, 882, 1602, 1602, ...
0, 1, 64, 561, 1821, 3921, 6441, 11481, ...
MAPLE
b:= proc(n, i, t) option remember;
`if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
A:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n-j, j, t-1]/j!, {j, i, n/t}]]; a[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
CROSSREFS
Main diagonal gives: A005651.
Sequence in context: A294018 A355692 A192003 * A293960 A062719 A305161
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jun 21 2013
STATUS
approved