login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092429
a(n) = n! * Sum_{i,j,k,l >= 0, i+j+k+l = n} 1/(i!*j!*k!*l!).
5
1, 1, 3, 10, 47, 126, 522, 1821, 8143, 26326, 109958, 396111, 1737122, 5998955, 24949277, 91979985, 397402223, 1418993350, 5881338702, 22010456331, 94022106862, 342803313261, 1416758002487, 5356198979731, 22685035586290, 83911052895151, 345921828889367
OFFSET
0,3
COMMENTS
a(n) is even iff n is a sum of 2 distinct powers of 2.
LINKS
FORMULA
E.g.f.: (t(1)^4 + 6*t(1)^2*t(2) + 8*t(1)*t(3) + 3*t(2)^2 + 6*t(4))/24 where t(1) = hypergeom([],[],x), t(2) = hypergeom([],[1],x^2), t(3) = hypergeom([],[1,1],x^3) and t(4) = hypergeom([],[1,1,1],x^4). - Vladeta Jovovic, Sep 22 2007, typo corrected by Vaclav Kotesovec, Jul 01 2013
Conjecture: a(n) ~ 4^n/4!. - Vaclav Kotesovec, Mar 07 2014
MAPLE
b:= proc(n, i, t) option remember;
`if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
a:= n-> n!*b(n, 0, 4):
seq(a(n), n=0..30); # Alois P. Heinz, Sep 21 2017
MATHEMATICA
Table[Sum[Sum[Sum[Sum[If[i+j+k+l==n, n!/i!/j!/k!/l!, 0], {l, 0, k}], {k, 0, j}], {j, 0, i}], {i, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 01 2013 *)
CoefficientList[Series[(HypergeometricPFQ[{}, {}, x]^4 +6*HypergeometricPFQ[{}, {}, x]^2 *HypergeometricPFQ[{}, {1}, x^2] +8*HypergeometricPFQ[{}, {}, x] *HypergeometricPFQ[{}, {1, 1}, x^3] +3*HypergeometricPFQ[{}, {1}, x^2]^2 +6*HypergeometricPFQ[{}, {1, 1, 1}, x^4])/24, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec after Vladeta Jovovic, Jul 01 2013 *)
PROG
(PARI) a(n)=sum(i=0, n, sum(j=0, i, sum(k=0, j, sum(l=0, k, if(i+j+k+l-n, 0, n!/i!/j!/k!/l!)))))
CROSSREFS
Column k=4 of A226873. - Alois P. Heinz, Jun 21 2013
Sequence in context: A020008 A167999 A000849 * A218919 A346188 A226875
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Mar 22 2004
STATUS
approved