login
A226878
Number of n-length words w over an 8-ary alphabet {a1,a2,...,a8} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a8) >= 0, where #(w,x) counts the letters x in word w.
4
1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 508150, 3436358, 21822351, 153741722, 1047906107, 7987668041, 57017211075, 456108767423, 3047668772102, 22857224364630, 163293406206195, 1236484989279502, 9040845014760345, 70057104400850471, 517521934394653205
OFFSET
0,3
LINKS
MAPLE
b:= proc(n, i, t) option remember;
`if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
a:= n-> n!*b(n, 0, 8):
seq(a(n), n=0..30);
CROSSREFS
Column k=8 of A226873.
Sequence in context: A226876 A325308 A226877 * A226879 A226880 A005651
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 21 2013
STATUS
approved