login
A226870
T(n,k)=Number of nXk (-1,0,1) arrays of determinants of 2X2 subblocks of some (n+1)X(k+1) binary array with rows and columns of the latter in lexicographically nondecreasing order
6
2, 4, 4, 7, 13, 7, 11, 37, 37, 11, 16, 91, 187, 91, 16, 22, 199, 792, 792, 199, 22, 29, 397, 2866, 6195, 2866, 397, 29, 37, 736, 9136, 41222, 41222, 9136, 736, 37, 46, 1285, 26267, 235528, 523701, 235528, 26267, 1285, 46, 56, 2134, 69311, 1179663, 5692900
OFFSET
1,1
COMMENTS
Table starts
..2....4......7.......11.........16...........22............29............37
..4...13.....37.......91........199..........397...........736..........1285
..7...37....187......792.......2866.........9136.........26267.........69311
.11...91....792.....6195......41222.......235528.......1179663.......5279390
.16..199...2866....41222.....523701......5692900......53537470.....442630782
.22..397...9136...235528....5692900....119835087....2182420206...34737998303
.29..736..26267..1179663...53537470...2182420206...77611438870.2412616653873
.37.1285..69311..5279390..442630782..34737998303.2412616653873
.46.2134.170084.21450391.3265819433.489248332852
LINKS
FORMULA
Empirical: column k is a polynomial in n of degree 3*2^(k-1)-1 for k in 1..5 and n>0,0,1,5,13
EXAMPLE
Some solutions for n=4 k=4
..0..0.-1..0....0..0..0..0....0..0.-1..1....0..0.-1..0....0.-1..1..0
..0.-1.-1..0....0..0..0..0....0.-1..0..0....0.-1.-1..0....0..0..0..0
.-1..0..0..0...-1..1..0..0....0..0..0.-1...-1.-1..1..0....0..0..0..0
..0..0..1..0....0..0..0..0....0..0..0..1....0..0..0..0...-1..1.-1..1
CROSSREFS
Column 1 is A000124
Sequence in context: A297085 A224158 A224409 * A227751 A268995 A205744
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jun 20 2013
STATUS
approved